精英家教网 > 初中数学 > 题目详情

【题目】已知:如图,在△AOB中,∠AOB=90°,AO=3cm,BO=4cm.将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,则线段B1D=cm.

【答案】1.5
【解析】解:∵在△AOB中,∠AOB=90°,AO=3cm,BO=4cm, ∴AB= =5cm,
∵点D为AB的中点,
∴OD= AB=2.5cm.
∵将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,
∴OB1=OB=4cm,
∴B1D=OB1﹣OD=1.5cm.
所以答案是1.5.

【考点精析】关于本题考查的直角三角形斜边上的中线和旋转的性质,需要了解直角三角形斜边上的中线等于斜边的一半;①旋转后对应的线段长短不变,旋转角度大小不变;②旋转后对应的点到旋转到旋转中心的距离不变;③旋转后物体或图形不变,只是位置变了才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知AB是⊙O的直径,直线CD与⊙O相切于C点,AC平分∠DAB.
(1)求证:AD⊥CD;
(2)若AD=2, ,求⊙O的半径R的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解不等式组 请结合题意填空,完成本题的解答.
(1)解不等式①,得
(2)解不等式②,得
(3)把不等式①和②的解集在数轴上表示出来:
(4)原不等式组的解集为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=ax2+bx+c(a≠0)的图象的顶点坐标是(2,1),并且经过点(4,2),直线y= x+1与抛物线交于B,D两点,以BD为直径作圆,圆心为点C,圆C与直线m交于对称轴右侧的点M(t,1),直线m上每一点的纵坐标都等于1.

(1)求抛物线的解析式;
(2)证明:圆C与x轴相切;
(3)过点B作BE⊥m,垂足为E,再过点D作DF⊥m,垂足为F,求BE:MF的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AC⊥BC,垂足为C,AC=4,BC=3 ,将线段AC绕点A按逆时针方向旋转60°,得到线段AD,连接DC,DB.
(1)线段DC=
(2)求线段DB的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,一次函数y=﹣2x+1与反比例函数y= 的图象有两个交点A(﹣1,m)和B,过点A作AE⊥x轴,垂足为点E;过点B作BD⊥y轴,垂足为点D,且点D的坐标为(0,﹣2),连接DE.
(1)求k的值;
(2)求四边形AEDB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AD平分∠BAC交边BC于点D,BD=AD,AB=3,AC=2,那么AD的长是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某建筑物BC上有一旗杆AB,从与BC相距38m的D处观测旗杆顶部A的仰角为50°,观测旗杆底部B的仰角为45°,则旗杆的高度约为 m.(结果精确到0.1m,参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】钓鱼岛自古就是中国的领土,中国有关部门已对钓鱼岛及其附属岛屿开展常态化监视监测.一日,中国一艘海监船从A点沿正北方向巡航,其航线距钓鱼岛(设M,N为该岛的东西两端点)最近距离为14.4km(即MC=14.4km).在A点测得岛屿的西端点M在点A的北偏东42°方向;航行4km后到达B点,测得岛屿的东端点N在点B的北偏东56°方向,(其中N,M,C在同一条直线上),求钓鱼岛东西两端点MN之间的距离(结果精确到0.1km).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,sin56°≈0.83,cos56°≈0.56,tan56°≈1.48)

查看答案和解析>>

同步练习册答案