精英家教网 > 初中数学 > 题目详情

【题目】如图,已知抛物线y=ax2+bx+c(a≠0)的图象的顶点坐标是(2,1),并且经过点(4,2),直线y= x+1与抛物线交于B,D两点,以BD为直径作圆,圆心为点C,圆C与直线m交于对称轴右侧的点M(t,1),直线m上每一点的纵坐标都等于1.

(1)求抛物线的解析式;
(2)证明:圆C与x轴相切;
(3)过点B作BE⊥m,垂足为E,再过点D作DF⊥m,垂足为F,求BE:MF的值.

【答案】
(1)

解:∵已知抛物线y=ax2+bx+c(a≠0)的图象的顶点坐标是(2,1),

∴可设抛物线解析式为y=a(x﹣2)2+1,

∵抛物线经过点(4,2),

∴2=a(4﹣2)2+1,解得a=

∴抛物线解析式为y= (x﹣2)2+1= x2﹣x+2;


(2)

解:联立直线和抛物线解析式可得 ,解得

∴B(3﹣ ),D(3+ + ),

∵C为BD的中点,

∴点C的纵坐标为 =

∵BD= =5,

∴圆的半径为

∴点C到x轴的距离等于圆的半径,

∴圆C与x轴相切;


(3)

解:如图,过点C作CH⊥m,垂足为H,连接CM,

由(2)可知CM= ,CH= ﹣1=

在Rt△CMH中,由勾股定理可求得MH=2,

∵HF= =

∴MF=HF﹣MH= ﹣2,

∵BE= ﹣1=

= =


【解析】(1)可设抛物线的顶点式,再结合抛物线过点(4,2),可求得抛物线的解析式;(2)联立直线和抛物线解析式可求得B、D两点的坐标,则可求得C点坐标和线段BD的长,可求得圆的半径,可证得结论;(3)过点C作CH⊥m于点H,连接CM,可求得MH,利用(2)中所求B、D的坐标可求得FH,则可求得MF和BE的长,可求得其比值.
【考点精析】根据题目的已知条件,利用二次函数的图象和二次函数的性质的相关知识可以得到问题的答案,需要掌握二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点;增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】学校为参加高邮市“五运会”广播操表演,准备从七、八、九三个年级分别选送到位的一男、一女共6名备选人中,每个年级随机选出1名学生,共3名学生担任领操员
(1)选出3名领操员中,男生的人数可能是
(2)求选出“两男一女”3名领操员的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在矩形ABCD中,动点E从A出发,沿AB→BC方向运动,当点E到达点C时停止运动,过点E做FE⊥AE,交CD于F点,设点E运动路程为x,FC=y,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的最大长度是 ,则矩形ABCD的面积是( )

A.
B.5
C.6
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将一个直角三角形纸片ABO放置在平面直角坐标系中,点 ,点B(0,1),点O(0,0).P是边AB上的一点(点P不与点A,B重合),沿着OP折叠该纸片,得点A的对应点A'.
(1)如图①,当点A'在第一象限,且满足A'B⊥OB时,求点A'的坐标;

(2)如图②,当P为AB中点时,求A'B的长;

(3)当∠BPA'=30°时,求点P的坐标(直接写出结果即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算题
(1)计算: +cos245°﹣(﹣2)1﹣|﹣ |
(2)先化简,再求值:( )÷ ,其中x=2 ,y=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校园文学社为了解本校学生对本社一种报纸四个版面的喜欢情况,随机抽查部分学生做了一次问卷调查,要求学生选出自己最喜欢的一个版面,将调查数据进行了整理、绘制成部分统计图如下:

请根据图中信息,解答下列问题:
(1)该调查的样本容量为 , a=%,“第一版”对应扇形的圆心角为°;
(2)请你补全条形统计图;
(3)若该校有1000名学生,请你估计全校学生中最喜欢“第三版”的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在△AOB中,∠AOB=90°,AO=3cm,BO=4cm.将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,则线段B1D=cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC中,AB=AC=5,BC=6,点O是边BC上的动点,以点O为圆心,OB为半径作圆O,交AB边于点D,过点D作∠ODP=∠B,交边AC于点P,交圆O与点E.设OB=x.
(1)当点P与点C重合时,求PD的长;
(2)设AP﹣EP=y,求y关于x的解析式及定义域;
(3)联结OP,当OP⊥OD时,试判断以点P为圆心,PC为半径的圆P与圆O的位置关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠B=∠C=36°,AB的垂直平分线交BC于点D,交AB于点H,AC的垂直平分线交BC于点E,交AC于点G,连接AD,AE,则下列结论错误的是(
A. =
B.AD,AE将∠BAC三等分
C.△ABE≌△ACD
D.SADH=SCEG

查看答案和解析>>

同步练习册答案