【题目】将一个直角三角形纸片ABO放置在平面直角坐标系中,点 ,点B(0,1),点O(0,0).P是边AB上的一点(点P不与点A,B重合),沿着OP折叠该纸片,得点A的对应点A'.
(1)如图①,当点A'在第一象限,且满足A'B⊥OB时,求点A'的坐标;
(2)如图②,当P为AB中点时,求A'B的长;
(3)当∠BPA'=30°时,求点P的坐标(直接写出结果即可).
【答案】
(1)
解:∵点 ,点B(0,1),
∴OA= ,OB=1,
由折叠的性质得:OA'=OA= ,
∵A'B⊥OB,
∴∠A'BO=90°,
在Rt△A'OB中,A'B= = ,
∴点A'的坐标为( ,1);
(2)
解:在Rt△ABO中,OA= ,OB=1,
∴AB= =2,
∵P是AB的中点,
∴AP=BP=1,OP= AB=1,
∴OB=OP=BP
∴△BOP是等边三角形,
∴∠BOP=∠BPO=60°,
∴∠OPA=180°﹣∠BPO=120°,
由折叠的性质得:∠OPA'=∠OPA=120°,PA'=PA=1,
∴∠BOP+∠OPA'=180°,
∴OB∥PA',
又∵OB=PA'=1,
∴四边形OPA'B是平行四边形,
∴A'B=OP=1;
(3)
解:设P(x,y),分两种情况:
①如图③所示:点A'在y轴上,
在△OPA'和△OPA中, ,
∴△OPA'≌△OPA(SSS),
∴∠A'OP=∠AOP= ∠AOB=45°,
∴点P在∠AOB的平分线上,
设直线AB的解析式为y=kx+b,
把点 ,点B(0,1)代入得: ,
解得: ,
∴直线AB的解析式为y=﹣ x+1,
∵P(x,y),
∴x=﹣ x+1,
解得:x= ,
∴P( , );
②如图④所示:
由折叠的性质得:∠A'=∠A=30°,OA'=OA,
∵∠BPA'=30°,
∴∠A'=∠A=∠BPA',
∴OA'∥AP,PA'∥OA,
∴四边形OAPA'是菱形,
∴PA=OA= ,作PM⊥OA于M,如图④所示:
∵∠A=30°,
∴PM= PA= ,
把y= 代入y=﹣ x+1得: =﹣ x+1,
解得:x= ,
∴P( , );
综上所述:当∠BPA'=30°时,点P的坐标为( , )或( , ).
【解析】(1)由点A和B的坐标得出OA= ,OB=1,由折叠的性质得:OA'=OA= ,由勾股定理求出A'B= = ,即可得出点A'的坐标为( ,1);(2)由勾股定理求出AB= =2,证出OB=OP=BP,得出△BOP是等边三角形,得出∠BOP=∠BPO=60°,求出∠OPA=120°,由折叠的性质得:∠OPA'=∠OPA=120°,PA'=PA=1,证出OB∥PA',得出四边形OPA'B是平行四边形,即可得出A'B=OP=1;(3)分两种情况:①点A'在y轴上,由SSS证明△OPA'≌△OPA,得出∠A'OP=∠AOP= ∠AOB=45°,得出点P在∠AOB的平分线上,由待定系数法求出直线AB的解析式为y=﹣ x+1,即可得出点P的坐标;②由折叠的性质得:∠A'=∠A=30°,OA'=OA,作出四边形OAPA'是菱形,得出PA=OA= ,作PM⊥OA于M,由直角三角形的性质求出PM= PA= ,把y= 代入y=﹣ x+1求出点P的纵坐标即可.
【考点精析】本题主要考查了勾股定理的概念和翻折变换(折叠问题)的相关知识点,需要掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等才能正确解答此题.
科目:初中数学 来源: 题型:
【题目】如图,坐标平面上,△ABC与△DEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB=BC=5.若A点的坐标为(﹣3,1),B、C两点在直线y=﹣3上,D、E两点在y轴上.
(1)在△ABC中,作AH、CK分别垂直BC、AB于H、K,求证:KC=HA;
(2)求F点到y轴的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=ax+bx-3(a≠0)与x轴交于点
A(-2,0)、B(4,0)两点,与y轴交于点C.
(1)求抛物线的解析式;
(2)点P从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点Q从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个也停止运动,当△PBQ存在时,求运动多少秒使△PBQ的面积最大,最大面积是多少?
(3)当△PBQ的面积最大时,在BC下方的抛物线上存在点M,使 : =5:2,求M点坐标。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,直线y=﹣x+3交y轴于点A,交反比例函数y= (k<0)的图象于点D,y= (k<0)的图象过矩形OABC的顶点B,矩形OABC的面积为4,连接OD.
(1)求反比例函数y= 的表达式;
(2)求△AOD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】解不等式组 请结合题意填空,完成本题的解答.
(1)解不等式①,得;
(2)解不等式②,得;
(3)把不等式①和②的解集在数轴上表示出来:
(4)原不等式组的解集为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将形状、大小完全相同的两个等腰三角形如图所示放置,点D在AB边上,△DEF绕点D旋转,腰DF和底边DE分别交△CAB的两腰CA,CB于M,N两点,若CA=5,AB=6,AD:AB=1:3,则MD+ 的最小值为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=ax2+bx+c(a≠0)的图象的顶点坐标是(2,1),并且经过点(4,2),直线y= x+1与抛物线交于B,D两点,以BD为直径作圆,圆心为点C,圆C与直线m交于对称轴右侧的点M(t,1),直线m上每一点的纵坐标都等于1.
(1)求抛物线的解析式;
(2)证明:圆C与x轴相切;
(3)过点B作BE⊥m,垂足为E,再过点D作DF⊥m,垂足为F,求BE:MF的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,一次函数y=﹣2x+1与反比例函数y= 的图象有两个交点A(﹣1,m)和B,过点A作AE⊥x轴,垂足为点E;过点B作BD⊥y轴,垂足为点D,且点D的坐标为(0,﹣2),连接DE.
(1)求k的值;
(2)求四边形AEDB的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com