精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系xOy中,直线y=﹣x+3交y轴于点A,交反比例函数y= (k<0)的图象于点D,y= (k<0)的图象过矩形OABC的顶点B,矩形OABC的面积为4,连接OD.
(1)求反比例函数y= 的表达式;
(2)求△AOD的面积.

【答案】
(1)解:∵直线y=﹣x+3交y轴于点A,

∴点A的坐标为(0,3),即OA=3,

∵矩形OABC的面积为4,

∴AB=

∵双曲线在第二象限,

∴k=4,

∴反比例函数的表达式为y=﹣


(2)解:解方程组

∵点D在第二象限,

∴点D的坐标为(﹣1,4),

∴△AOD的面积= ×3×1=


【解析】(1)根据矩形的面积求出AB,求出反比例函数的解析式;(2)解方程组求出反比例函数与一次函数的交点,确定点D的坐标,根据三角形的面积公式计算即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某林业部门要考察某种幼树在一定条件下的移植成活率,在同样的条件下对这种幼树进行大量移植,并统计成活情况,记录如下(其中频率结果保留小数点后三位)

移植总数(n)

10

50

270

400

750

1500

3500

7000

9000

成活数(m)

8

47

235

369

662

1335

3203

6335

8118

成活的频率

0.800

0.940

0.870

0.923

0.883

0.890

0.915

0.905

0.902

由此可以估计幼树移植成活的概率为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数学活动课上,老师和学生一起去测量学校升旗台上旗杆AB的高度.如图,老师测得升旗台前斜坡FC的坡比为iFC=1:10(即EF:CE=1:10),学生小明站在离升旗台水平距离为35m(即CE=35m)处的C点,测得旗杆顶端B的仰角为α.已知tanα= ,升旗台高AF=1m,小明身高CD=1.6m,请帮小明计算出旗杆AB的高度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“元旦”期间,某商场为了吸引顾客购物消费,设计了如图所示的一个转盘,转盘平均分成3份.
(1)求转动该转盘一次所得的颜色是黄色的概率;
(2)请用列表法或画树状图的方法来说明转动该转盘两次,两次所得的颜色相同的概率.
(3)该商场设计了如下两种奖励方案:方案一,转动该转盘一次,若转得的颜色是黄色则可得奖;方案二,转动该转盘两次,若两次转得的颜色相同则可得奖。如果你是顾客,你选择哪种方案比较划算?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在矩形ABCD中,动点E从A出发,沿AB→BC方向运动,当点E到达点C时停止运动,过点E做FE⊥AE,交CD于F点,设点E运动路程为x,FC=y,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的最大长度是 ,则矩形ABCD的面积是( )

A.
B.5
C.6
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD和正方形EFCG的边长分别为3和1,点F,G分别在边BC,CD上,P为AE的中点,连接PG,则PG的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将一个直角三角形纸片ABO放置在平面直角坐标系中,点 ,点B(0,1),点O(0,0).P是边AB上的一点(点P不与点A,B重合),沿着OP折叠该纸片,得点A的对应点A'.
(1)如图①,当点A'在第一象限,且满足A'B⊥OB时,求点A'的坐标;

(2)如图②,当P为AB中点时,求A'B的长;

(3)当∠BPA'=30°时,求点P的坐标(直接写出结果即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校园文学社为了解本校学生对本社一种报纸四个版面的喜欢情况,随机抽查部分学生做了一次问卷调查,要求学生选出自己最喜欢的一个版面,将调查数据进行了整理、绘制成部分统计图如下:

请根据图中信息,解答下列问题:
(1)该调查的样本容量为 , a=%,“第一版”对应扇形的圆心角为°;
(2)请你补全条形统计图;
(3)若该校有1000名学生,请你估计全校学生中最喜欢“第三版”的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y= x2+bx+c与x轴交于点A(﹣2,0),交y轴于点B(0, ).直线y=kx 过点A与y轴交于点C,与抛物线的另一个交点是D.

(1)求抛物线y= x2+bx+c与直线y=kx 的解析式;
(2)设点P是直线AD下方的抛物线上一动点(不与点A、D重合),过点P作y轴的平行线,交直线AD于点M,作DE⊥y轴于点E.探究:是否存在这样的点P,使四边形PMEC是平行四边形?若存在请求出点P的坐标;若不存在,请说明理由;
(3)在(2)的条件下,作PN⊥AD于点N,设△PMN的周长为m,点P的横坐标为x,求m与x的函数关系式,并求出m的最大值.

查看答案和解析>>

同步练习册答案