科目: 来源: 题型:
【题目】如图,一次函数y1=x+1的图象与反比例函数
(k为常数,且k≠0)的图象都经过点A(m,2) ![]()
(1)求点A的坐标及反比例函数的表达式;
(2)结合图象直接比较:当x>0时,y1和y2的大小.
查看答案和解析>>
科目: 来源: 题型:
【题目】“中国梦”关乎每个人的幸福生活,为进一步感知我们身边的幸福,展现成都人追梦的风采,我市某校开展了以“梦想中国,逐梦成都”为主题的摄影大赛,要求参赛学生每人交一件作品.现将参赛的50件作品的成绩(单位:分)进行统计如下:
等级 | 成绩(用s表示) | 频数 | 频率 |
A | 90≤s≤100 | x | 0.08 |
B | 80≤s<90 | 35 | y |
C | s<80 | 11 | 0.22 |
合 计 | 50 | 1 |
请根据上表提供的信息,解答下列问题:
(1)表中的x的值为 , y的值为
(2)将本次参赛作品获得A等级的学生依次用A1 , A2 , A3 , …表示,现该校决定从本次参赛作品中获得A等级学生中,随机抽取两名学生谈谈他们的参赛体会,请用树状图或列表法求恰好抽到学生A1和A2的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,已知抛物线y=
x2+bx+c(b,c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,﹣1),C的坐标为(4,3),直角顶点B在第四象限.![]()
(1)如图,若该抛物线过A,B两点,求该抛物线的函数表达式;
(2)平移(1)中的抛物线,使顶点P在直线AC上滑动,且与AC交于另一点Q.
(i)若点M在直线AC下方,且为平移前(1)中的抛物线上的点,当以M、P、Q三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M的坐标;
(ii)取BC的中点N,连接NP,BQ.试探究
是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,⊙O的半径r=25,四边形ABCD内接于圆⊙O,AC⊥BD于点H,P为CA延长线上的一点,且∠PDA=∠ABD. ![]()
(1)试判断PD与⊙O的位置关系,并说明理由;
(2)若tan∠ADB=
,PA=
AH,求BD的长;
(3)在(2)的条件下,求四边形ABCD的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】某物体从P点运动到Q点所用时间为7秒,其运动速度v(米每秒)关于时间t(秒)的函数关系如图所示.某学习小组经过探究发现:该物体前进3秒运动的路程在数值上等于矩形AODB的面积.由物理学知识还可知:该物体前t(3<t≤7)秒运动的路程在数值上等于矩形AODB的面积与梯形BDNM的面积之和. 根据以上信息,完成下列问题:![]()
(1)当3<t≤7时,用含t的式子表示v;
(2)分别求该物体在0≤t≤3和3<t≤7时,运动的路程s(米)关于时间t(秒)的函数关系式;并求该物体从P点运动到Q总路程的
时所用的时间.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知△ABC和△ECD都是等边三角形, B、C、D在一条直线上。
求证:(1)BE=AD;
(2)CF=CH;
(3)△FCH是等边三角形;
(4)FH∥BD;
(5)求∠EMD的度数。;
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在图①中的正方形中剪去一个边长为2a+b的正方形,将剩余的部分按图②的方式拼成一个长方形.
(1)求剪去正方形的面积;
(2)求拼成的长方形的长、宽以及它的面积.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】某市为创建省卫生城市,有关部门决定利用现有的4200盆甲种花卉和3090盆乙种花卉,搭配A、B两种园艺造型共60个,摆放于入城大道的两侧,搭配每个造型所需花卉数量的情况下表所示,结合上述信息,解答下列问题:
(1)符合题意的搭配方案有几种?
(2)如果搭配一个A种造型的成本为1000元,搭配一个B种造型的成本为1500元,试说明选用那种方案成本最低?最低成本为多少元?
造型花卉 | 甲 | 乙 |
A | 80 | 40 |
B | 50 | 70 |
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,A,B,C为⊙O上相邻的三个n等分点,
,点E在
上,EF为⊙O的直径,将⊙O沿EF折叠,使点A与A′重合,点B与B′重合,连接EB′,EC,EA′.设EB′=b,EC=c,EA′=p.现探究b,c,p三者的数量关系:发现当n=3时,p=b+c.请继续探究b,c,p三者的数量关系:当n=4时,p=;当n=12时,p= . (参考数据:sin15°=cos75°=
,cos15°=sin75°=
)![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com