精英家教网 > 初中数学 > 题目详情

【题目】如图,一次函数y1=x+1的图象与反比例函数 (k为常数,且k≠0)的图象都经过点A(m,2)
(1)求点A的坐标及反比例函数的表达式;
(2)结合图象直接比较:当x>0时,y1和y2的大小.

【答案】
(1)解:将A的坐标代入y1=x+1,

得:m+1=2,

解得:m=1,

故点A坐标为(1,2),

将点A的坐标代入:

得:2=

解得:k=2,

则反比例函数的表达式y2=


(2)解:结合函数图象可得:

当0<x<1时,y1<y2

当x=1时,y1=y2

当x>1时,y1>y2


【解析】(1)将A点代入一次函数解析式求出m的值,然后将A点坐标代入反比例函数解析式,求出k的值即可得出反比例函数的表达式;(2)结合函数图象即可判断y1和y2的大小.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx﹣3k+4与⊙O交于B、C两点,则弦BC的长的最小值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,C是半圆O上的一点,AC平分∠DAB,AD⊥CD,垂足为D,AD交⊙O于E,连接CE.
(1)判断CD与⊙O的位置关系,并证明你的结论;
(2)若E是 的中点,⊙O的半径为1,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若关于t的不等式组 ,恰有三个整数解,则关于x的一次函数 的图象与反比例函数 的图象的公共点的个数为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某物体从P点运动到Q点所用时间为7秒,其运动速度v(米每秒)关于时间t(秒)的函数关系如图所示.某学习小组经过探究发现:该物体前进3秒运动的路程在数值上等于矩形AODB的面积.由物理学知识还可知:该物体前t(3<t≤7)秒运动的路程在数值上等于矩形AODB的面积与梯形BDNM的面积之和. 根据以上信息,完成下列问题:

(1)当3<t≤7时,用含t的式子表示v;
(2)分别求该物体在0≤t≤3和3<t≤7时,运动的路程s(米)关于时间t(秒)的函数关系式;并求该物体从P点运动到Q总路程的 时所用的时间.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中BC=8,CD=6,将△ABE沿BE折叠,使点A恰好落在对角线BD上F处,则DE的长是(
A.3
B.
C.5
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在“双十二”期间,AB两个超市开展促销活动,活动方式如下:

A超市:购物金额打9折后,若超过2000元再优惠300元;

B超市:购物金额打8

某学校计划购买某品牌的篮球做奖品,该品牌的篮球在AB两个超市的标价相同根据商场的活动方式:

(1)若一次性付款4200元购买这种篮球,则在B商场购买的数量比在A商场购买的数量多5请求出这种篮球的标价

(2)学校计划购买100个篮球,请你设计一个购买方案,使所需的费用最少.(直接写出方案

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们知道:任意一个有理数与无理数的和为无理数,任意一个不为零的有理数与一个无理数的积为无理数,而零与无理数的积为零.由此可得:如果ax+b=0,其中a、b为有理数,x为无理数,那么a=0且b=0.

运用上述知识,解决下列问题:

(1)如果a-2+b+3=0,其中a、b为有理数,那么a= ,b=

(2)如果2+a-1-b=5,其中a、b为有理数,求a+2b的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED,若ED=EC.
(1)求证:AB=AC;
(2)若AB=4,BC=2 ,求CD的长.

查看答案和解析>>

同步练习册答案