相关习题
 0  351753  351761  351767  351771  351777  351779  351783  351789  351791  351797  351803  351807  351809  351813  351819  351821  351827  351831  351833  351837  351839  351843  351845  351847  351848  351849  351851  351852  351853  351855  351857  351861  351863  351867  351869  351873  351879  351881  351887  351891  351893  351897  351903  351909  351911  351917  351921  351923  351929  351933  351939  351947  366461 

科目: 来源: 题型:

【题目】在一个不透明的盒子中装有三张卡片,分别标有数字1,2,3,这些卡片除数字不同外其余均相同.小吉从盒子中随机抽取一张卡片记下数字后放回,洗匀后再随机抽取一张卡片.用画树状图或列表的方法,求两次抽取的卡片上数字之和为奇数的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,ABE为等腰直角三角形,ABE=90°,BC=BD,FAD=30°

(1)求证:ABC≌△EBD

(2)求AFE的度数.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,直线l1的函数关系式为,且l1与x轴交于点D,直线l2经过定点A(4,0),B(﹣1,5),直线l1与l2相交于点C,

(1)求直线l2的解析式;

(2)求ADC的面积;

(3)在直线l2上存在一点F(不与C重合),使得ADFADC的面积相等,请求出F点的坐标;

(4)在x轴上是否存在一点E,使得BCE的周长最短?若存在请求出E点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知∠1,∠2互为补角,且∠3=B

(1)求证:∠AFE=ACB

(2)CE平分∠ACB,且∠1=80°,∠3=45°,求∠AFE的度数.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,抛物线与x轴交于点和A(﹣1,0)和点B(4,0),与y轴交于点C(0,2).

(1)求抛物线解析式;
(2)点P是抛物线BC段上一点,PD⊥BC,PE∥y轴,分别交BC于点D、E.当DE= 时,求点P的坐标;
(3)M是平面内一点,将符合(2)条件下的△PDE绕点M沿逆时针方向旋转90°后,点P,D,E的对应点分别是P′、D′、E′.设P′E′的中点为N,当抛物线同时经过D′与N时,求出D′的横坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】C在直线AB上,AC=10cmCB=8cm,点MN分别是ACBC的中点,则线段MN的长为______

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,ABC周长为1,连接ABC三边中点构成第二个三角形,再连接第二个三角形三边中点构成第三个三角形,以此类推,第2 016个三角形的周长为(  )

A. 22 016 B. 22 017 C. ()2 016 D. ()2 015

查看答案和解析>>

科目: 来源: 题型:

【题目】完成下面推理过程:

如图,已知∠1 ∠2∠B ∠C,可推得AB∥CD.理由如下:

∵∠1 ∠2(已知),

∠1 ∠CGD______________ _________),

∴∠2 ∠CGD(等量代换).

∴CE∥BF___________________ ________).

∴∠ ∠C__________________________).

∵∠B ∠C(已知),

∴∠ ∠B(等量代换).

∴AB∥CD________________________________).

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,C为线段AE上一动点(不与A、E重合),在AE同侧分别作等边△ABC和等边△CDE,ADBE交于点O,ADBC交于点P,BECD交于点Q,连接PQ,以下五个结论:①AD=BE;PQAE;CP=CQ;BO=OE;⑤∠AOB=60°,恒成立的结论有

A. ①③⑤ B. ①③④⑤ C. ①②③⑤ D. ①②③④⑤

查看答案和解析>>

科目: 来源: 题型:

【题目】【问题提出】如图①,已知海岛A到海岸公路BD的距离为AB,C为公路BD上的酒店,从海岛A到酒店C,先乘船到登陆点D,船速为a,再乘汽车,车速为船速的n倍,点D选在何处时,所用时间最短?
【特例分析】若n=2,则时间t= + ,当a为定值时,问题转化为:在BC上确定一点D,使得AD+ 的值最小.如图②,过点C做射线CM,使得∠BCM=30°.

(1)过点D作DE⊥CM,垂足为E,试说明:DE=
(2)【问题解决】请在图②中画出所用时间最短的登陆点D′,并说明理由.
(3)【模型运用】请你仿照“特例分析”中的相关步骤,解决图①中的问题(写出具体方案,如相关图形呈现、图形中角所满足的条件、作图的方法等).
(4)如图③,海面上一标志A到海岸BC的距离AB=300m,BC=300m.救生员在C点处发现标志A处有人求救,
立刻前去营救,若救生员在岸上跑的速度都是6m/s,在海中游泳的速度都是2m/s,求救生员从C点出发到
达A处的最短时间.

查看答案和解析>>

同步练习册答案