相关习题
 0  352382  352390  352396  352400  352406  352408  352412  352418  352420  352426  352432  352436  352438  352442  352448  352450  352456  352460  352462  352466  352468  352472  352474  352476  352477  352478  352480  352481  352482  352484  352486  352490  352492  352496  352498  352502  352508  352510  352516  352520  352522  352526  352532  352538  352540  352546  352550  352552  352558  352562  352568  352576  366461 

科目: 来源: 题型:

【题目】如图,将Rt△ABC沿某条直线折叠,使斜边的两个端点A与B重合,折痕为DE.

(1)如果AC=6cm,BC=8cm,试求△ACD的周长;

(2)如果∠CAD:∠BAD=1:2,求∠B的度数.

查看答案和解析>>

科目: 来源: 题型:

【题目】将一个直角三角形纸片放置在平面直角坐标系中,是坐标原点,点坐标为,点坐标为,点是边上一点(不与点,点重合),沿折叠该纸片,点的对应点为点,连接

1)如图1,当点在第一象限,且时,求点的坐标;

2)如图2,当点的中点时;

①求证:

②直接写出四边形的面积;

3)当时,直接写出点的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在中,,点的中点,过点,垂足在线段上,连接

(1)求证:

(2),则 °

查看答案和解析>>

科目: 来源: 题型:

【题目】我市经济技术开发区某智能手机有限公司接到生产300万部智能手机的订单,为了尽快交货,增开了一条生产线,实际每月生产能力比原计划提高了50%,结果比原计划提前5个月完成交货,求每月实际生产智能手机多少万部.

查看答案和解析>>

科目: 来源: 题型:

【题目】龟兔首次赛跑之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了龟兔再次赛跑的故事(x表示乌龟从起点出发所行的时间,y1表示乌龟所行的路程,y2表示兔子所行的路程).有下列说法:①龟兔再次赛跑的路程为1 000米;②兔子和乌龟同时从起点出发;③乌龟在途中休息了10分钟.其中正确的说法是_________________(把你认为正确说法的序号都填上)

查看答案和解析>>

科目: 来源: 题型:

【题目】某班有50位学生,每位学生都有一个序号,将50张编有学生序号(从1号到50号)的卡片(除序号不同外其它均相同)打乱顺序重新排列,从中任意抽取1张卡片.
(1)在序号中,是20的倍数的有:20,40,能整除20的有:1,2,4,5,10(为了不重复计数,20只计一次),求取到的卡片上序号是20的倍数或能整除20的概率;
(2)若规定:取到的卡片上序号是k(k是满足1≤k≤50的整数),则序号是k的倍数或能整除k(不重复计数)的学生能参加某项活动,这一规定是否公平?请说明理由;
(3)请你设计一个规定,能公平地选出10位学生参加某项活动,并说明你的规定是符合要求的.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,BC是⊙O的直径,点A在⊙O上,AD⊥BC,垂足为D,弧AE等于弧AB,BE分别交AD、AC于点F、G.
(1)判断△FAG的形状,并说明理由;
(2)若点E和点A在BC的两侧,BE、AC的延长线交于点G,AD的延长线交BE于点F,其余条件不变,(1)中的结论还成立吗?请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,在△ABC中,DM,EN分别垂直平分AB和AC,交BC于点D,E,若∠DAE=50°°,则∠BAC=________,若△ADE的周长为19cm,则BC=_____cm.

查看答案和解析>>

科目: 来源: 题型:

【题目】元旦期间,某商场搞优惠促销活动,其活动内容是:凡在本商场一次性购物超过100元者,超过100元的部分按9折优惠.在此活动中,李明到该商场为单位一次性购买单价为60元的办公用品x(x2)件,则应付款y()与商品件数x()之间的关系式是( )

A.y54xB.y54x10

C.y54x90D.y54x45

查看答案和解析>>

科目: 来源: 题型:

【题目】夏季空调销售供不应求,某空调厂接到一份紧急订单,要求在10天内(含10天)完成任务,为提高生产效率,工厂加班加点,接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,由于机器损耗等原因,当日生产的空调数量达到50台后,每多生产一台,当天生产的所有空调,平均每台成本就增加20元.
(1)设第x天生产空调y台,直接写出y与x之间的函数解析式,并写出自变量x的取值范围.
(2)若每台空调的成本价(日生产量不超过50台时)为2000元,订购价格为每台2920元,设第x天的利润为W元,试求W与x之间的函数解析式,并求工厂哪一天获得的利润最大,最大利润是多少.

查看答案和解析>>

同步练习册答案