相关习题
 0  352557  352565  352571  352575  352581  352583  352587  352593  352595  352601  352607  352611  352613  352617  352623  352625  352631  352635  352637  352641  352643  352647  352649  352651  352652  352653  352655  352656  352657  352659  352661  352665  352667  352671  352673  352677  352683  352685  352691  352695  352697  352701  352707  352713  352715  352721  352725  352727  352733  352737  352743  352751  366461 

科目: 来源: 题型:

【题目】如图,抛物线y=a(x﹣1)(x﹣3)与x轴交于A,B两点,与y轴的正半轴交于点C,其顶点为D.

(1)写出C,D两点的坐标(用含a的式子表示);
(2)设SBCD:SABD=k,求k的值;
(3)当△BCD是直角三角形时,求对应抛物线的解析式.

查看答案和解析>>

科目: 来源: 题型:

【题目】心理学家研究发现,一般情况下,一节课分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为 理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数随时间(分钟)的变化规律如图所示(其中都为线段)

1)分别求出线段的函数解析式;

2)开始上课后第分钟时与第分钟时相比较,何时学生的注意力更集中?

3)一道数学竞赛题,需要讲分钟,为了效果较好,要求学生的注意力指标数最低达到那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知二次函数y=ax2+bx+4的图象与x轴交于点B(﹣2,0),点C(8,0),与y轴交于点A.

(1)求二次函数y=ax2+bx+4的表达式;
(2)连接AC,AB,若点N在线段BC上运动(不与点B,C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求N点的坐标;
(3)连接OM,在(2)的结论下,求OM与AC的数量关系.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,矩形的对角线交于点,且

1)求证:四边形是菱形;

2)若,求菱形的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线y= x2 x﹣ 与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,对称轴与x轴交于点D,点E(4,n)在抛物线上.

(1)求直线AE的解析式;
(2)点P为直线CE下方抛物线上的一点,连接PC,PE.当△PCE的面积最大时,连接CD,CB,点K是线段CB的中点,点M是CP上的一点,点N是CD上的一点,求KM+MN+NK的最小值;
(3)点G是线段CE的中点,将抛物线y= x2 x﹣ 沿x轴正方向平移得到新抛物线y′,y′经过点D,y′的顶点为点F.在新抛物线y′的对称轴上,是否存在一点Q,使得△FGQ为等腰三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】某县为了了解2018年初中毕业生毕业后的去向,对部分九年级学生进行了抽样调查,就九年级学生的四种去向(A.读普通高中;B.读职业高中;C.直接进入社会就业;D.其他)进行数据统计,并绘制了两幅不完整的统计图(如图①②)请问:

1)本次共调查了_ 名初中毕业生;

2)请计算出本次抽样调查中,读职业高中的人数和所占百分比,并将两幅统计图中不完整的部分补充完整;

3)若该县2018年九年级毕业生共有人,请估计该县今年九年级毕业生读职业高中的学生人数.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,一次函数y=x+m (m为常数)的图像与x轴交于点A(-3,0),与y轴交于点C.以直线x=1为对称轴的抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过A、C两点,并与x轴的正半轴交于点B.

(1)求m的值及抛物线的函数表达式;
(2)若P是抛物线对称轴上一动点,△ACP周长最小时,求出P的坐标;
(3)是否存在抛物在线一动点Q,使得△ACQ是以AC为直角边的直角三角形?若存在,求出点Q的横坐标;若不存在,请说明理由;
(4)在(2)的条件下过点P任意作一条与y轴不平行的直线交抛物线于M1(x1,y1),M2(x2,y2)两点,试问是否为定值,如果是,请直接写出结果,如果不是请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,抛物线 x轴的负半轴交于点A,与y轴交于点B,连结AB.点C 在抛物线上,直线AC与y轴交于点D.

(1)求c的值及直线AC的函数表达式;
(2)点P在x轴的正半轴上,点Q在y轴正半轴上,连结PQ与直线AC交于点M,连结MO并延长交AB于点N,若M为PQ的中点.
①求证:△APM∽△AON;
②设点M的横坐标为m , 求AN的长(用含m的代数式表示).

查看答案和解析>>

科目: 来源: 题型:

【题目】解答题
(1)如图1,在正方形ABCD中,点E,F分别在BC,CD上,AE⊥BF于点M,求证:AE=BF;
(2)如图2,将 (1)中的正方形ABCD改为矩形ABCD,AB=2,BC=3,AE⊥BF于点M,探究AE与BF的数量关系,并证明你的结论.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平行四边形ABCD中,边AB的垂直平分线交AD于点E,交CB的延长线于点F,连接AF,BE.
(1)求证:△AGE≌△BGF;
(2)试判断四边形AFBE的形状,并说明理由.

查看答案和解析>>

同步练习册答案