科目: 来源: 题型:
【题目】如图,在等边三角形ABC中,BC=6
,射线AG∥BC,点E从点A出发沿射线AG以
的速度运动,同时点F从点B出发沿射线BC以
的速度运动,设运动时间为![]()
![]()
(1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF
(2)填空:
①当
为 s时,四边形ACFE是菱形;
②当
为 s时,以A,F,C,E为顶点的四边形是直角梯形.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,O为坐标原点,点M、N位于第一象限,其中M的坐标为(m,5),点N的坐标(n,8),且m≥n.
(1)若MN与坐标轴平行,则MN= ;
(2)若m、n、t满足
,MA⊥x轴,垂足为A,NB⊥x轴,垂足为B.
①求四边形MABN的面积;
②连接MN、OM、ON,若△MON的面积大于26而小于30,求m的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知:如图,四边形ABCD四条边上的中点分别为E、F、G、H,顺次连接EF、FG、GH、HE,得到四边形EFGH(即四边形ABCD的中点四边形).
![]()
(1)四边形EFGH的形状是_______,证明你的结论.
(2)连接四边形ABCD的对角线AC与BD,当AC与BD满足____条件时,四边形EFGH是矩形;(只需要写结论,不需证明)
(3)连接四边形ABCD的对角线AC与BD,当AC与BD满足______条件时,四边形EFGH是菱形.(只需要写结论,不需证明)
查看答案和解析>>
科目: 来源: 题型:
【题目】四边形ABCD四条边上的中点分别为E、F、G、H,顺次连接EF、FG、GH、HE,得到四边形EFGH(即四边形ABCD的中点四边形).
![]()
(1)四边形EFGH的形状是什么,并证明你的结论.
(2)当四边形ABCD的对角线满足什么条件时,四边形EFGH是矩形;并利用你给的条件加以证明.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,小丽想知道自家门前小河的宽度,于是她按以下办法测出了如下数据:小丽在河岸边选取点A,在点A的对岸选取一个参照点C,测得∠CAD=30°;小丽沿岸向前走30m选取点B,并测得∠CBD=60°.请根据以上数据,用你所学的数学知识,帮小丽计算小河的宽度.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知反比例函数y=
(m为常数,且m≠5).
(1)若在其图象的每个分支上,y随x的增大而增大,求m的取值范围;
(2)若其图象与一次函数y=-x+1的图象的一个交点的纵坐标是3,求m的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】4月的某天小欣在“A超市”买了“雀巢巧克力”和“趣多多小饼干”共10包,已知“雀巢巧克力”每包22元,“趣多多小饼干”每包2元,总共花费了80元.
(1)请求出小欣在这次采购中,“雀巢巧克力”和“趣多多小饼干”各买了多少包?
(2)“五一”期间,小欣发现,A、B两超市以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在A超市累计购物超过50元后,超过50元的部分打九折;在B超市累计购物超过100元后,超过100元的部分打八折.
①请问“五一”期间,若小欣购物金额超过100元,去哪家超市购物更划算?
②“五一”期间,小欣又到“B超市”购买了一些“雀巢巧克力”,请问她至少购买多少包时,平均每包价格不超过20元?
查看答案和解析>>
科目: 来源: 题型:
【题目】已知A(﹣4,0)、B(﹣3,﹣3)、C(0,﹣5)
![]()
(1)画出△ABC;
(2)△A′B′C′是△ABC经过平移得到的,△ABC中任意一点P(x1,y1)平移后的对应点为P′(x1+5,y1+3).画出平移后的△A′B′C′,并求△A′B′C′的面积;
(3)设直线A′C′与x轴交于点Q,求交点Q坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com