科目: 来源: 题型:
【题目】为预防疾病,某校对教室进行“药熏消毒”.已知药物燃烧阶段,室内每立方米空气中的含药量
(mg)与燃烧时间
(分钟)成正比例;燃烧后,
与
成反比例(如图所示).现测得药物10分钟燃完,此时教室内每立方米空气含药量为8mg.据以上信息解答下列问题:
(1)求药物燃烧时
与
的函数关系式.(2)求药物燃烧后
与
的函数关系式.
(3)当每立方米空气中含药量低于1.6mg时,对人体方能无毒害作用,那么从消毒开始,经多长时间学生才可以回教室?
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,∠1+∠2=180°,∠3=∠B,试判断∠AED与∠C的大小关系,并证明你的结论.
![]()
∠C与∠AED相等,理由如下:
∵∠1+∠2=180°(已知),∠1+∠DFE=180°(邻补角定义)
∴∠2=___(___),
∴AB∥EF(___)
∵∠3=___(___)
又∠B=∠3(已知)
∴∠B=___(等量代换)
∴DE∥BC(___)
∴∠C=∠AED(___).
查看答案和解析>>
科目: 来源: 题型:
【题目】某校有3600名学生,为了解全校学生的上学方式,该校数学兴趣小组以问卷调查的形式,随机调查了该校部分学生的主要上学方式(参与问卷调查的学生只能从以下六个种类中选择一类),并将调查结果绘制成如下不完整的统计图.
![]()
(1)参与本次问卷调查的学生共有 人,其中选择D类的人数有 人;
(2)在扇形统计图中,求E类对应的扇形圆心角
的度数,并补全C对应的条形统计图;
(3)若将A、B、C.D.E这四类上学方式视为“绿色出行”,请估计该校选择“绿色出行”的学生人数.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在菱形ABCD中,AB=5cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB.CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,把△ABC绕AC边的中点M旋转后得△DEF,若直角顶点F恰好落在AB边上,且DE边交AB边于点G,若AC=4,BC=3,则AG的长为( )
![]()
A.
B.
C.
D.1
查看答案和解析>>
科目: 来源: 题型:
【题目】若将一幅三角板按如图所示的方式放置,则下列结论中不正确的是( )
![]()
A. ∠1=∠3 B. 如果∠2=30°,则有AC∥DE
C. 如果∠2=30°,则有BC∥AD D. 如果∠2=30°,必有∠4=∠C
查看答案和解析>>
科目: 来源: 题型:
【题目】数轴上有A、B、C三点,分别表示有理数-26、-10、20,动点P从A出发,以每秒1个单位的速度向右移动,当P点运动到C点时运动停止.设点P移动时间为t秒
![]()
(1) 用含t的代数式表示P点对应的数;
(2) 当P点运动到B点时,点Q从A点出发,以每秒2个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回A点;
① 用含t的代数式表示Q点在由A到C过程中对应的数;
② 当t=___________时,动点P、Q到达同一位置(即相遇);
③ 当PQ=3时,求t的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示,一次函数
(
为常数)的图象与反比例函数
(
为常数,且
<0)的图象交于A,B两点.
(1) 如图①,当
,
时,
① A ( , ),B ( , );
②直接写出使
成立的
的取值范围;
(2) 如图②,将(1)中直线AB向下平移,交反比例函数图像于点C,D,连接OC,AC,若△AOC的面积为8,求
的值;
(3) 若A,B两点的横坐标分别为
,
,且
,
满足
,证明:2m-b=-3.
![]()
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示,在正方形ABCD中,点E是边AB上一动点(不与A,B重合),延长BA至点F,使AF=BE,连接CE,DF.
(1) 判断四边形CEFD的形状,并说明理由;
(2) 如图①,连接AC,过点E作EH⊥AC,垂足为点H.
①证明:AH=EH;
②若BE:AE=1:
,求∠BCE的度数;
③如图②,连接FH,在点E的运动过程中,
的值是否发生变化?若不变,求出
的值;若变化,请说明理由.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com