相关习题
 0  355639  355647  355653  355657  355663  355665  355669  355675  355677  355683  355689  355693  355695  355699  355705  355707  355713  355717  355719  355723  355725  355729  355731  355733  355734  355735  355737  355738  355739  355741  355743  355747  355749  355753  355755  355759  355765  355767  355773  355777  355779  355783  355789  355795  355797  355803  355807  355809  355815  355819  355825  355833  366461 

科目: 来源: 题型:

【题目】嫦娥四号探测器于201913日,成功着陆在月球背面,通过鹊桥中继星传回了世界第一张近距离拍摄的月背影像图,开启了人类月球探测新篇章.当中继星成功运行于地月拉格朗日L2点时,它距离地球约1500000km.用科学记数法表示数1500000( )

A. 15×105 B. 1.5×106 C. 0.15×107 D. 1.5×105

查看答案和解析>>

科目: 来源: 题型:

【题目】已知二次函数的部分图象如图所示,则关于的一元二次方程的解为

查看答案和解析>>

科目: 来源: 题型:

【题目】已知某项工程由甲乙两队合作12天可以完成,供需工程费用13800,乙队单独完成这项工程所需时间是甲队单独完成这项工程所需时间的1.5,且甲队每天的工程费用比乙队多150

1甲乙两队单独完成这项工程分别需要多少天?

2若工程管理部门决定从这两个队中选一个队单独完成这项工程,从节约资金的角度考虑,应该选择哪个工程队?请说明理由

查看答案和解析>>

科目: 来源: 题型:

【题目】(a,b)是一次函数y=(k-2)x+m与反比例函数的图象的交点,且a、b是关于x的一元二次方程的两个不相等的实数根,其中k为非负整数,m、n为常数.

(1)求k的值;

(2)求一次函数与反比例函数的解析式.

查看答案和解析>>

科目: 来源: 题型:

【题目】综合与探究:

如图,抛物线y=x2x4x轴交与AB两点(点B在点A的右侧),与y轴交于点C,连接BC,以BC为一边,点O为对称中心作菱形BDEC,点Px轴上的一个动点,设点P的坐标为(m0),过点Px轴的垂线l交抛物线于点Q

1)求点ABC的坐标.

2)当点P在线段OB上运动时,直线l分别交BDBC于点MN.试探究m为何值时,四边形CQMD是平行四边形,此时,请判断四边形CQBM的形状,并说明理由.

3)当点P在线段EB上运动时,是否存在点Q,使BDQ为直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知关于x的方程x2+2(a+1)x+(3a2+4ab+4b2+2)=0有实根,则a、b的值分别为______________

查看答案和解析>>

科目: 来源: 题型:

【题目】如图7所示,点轴上,且,分别过点轴的平行线,与反比例函数的图象分别交于点,分别过点 轴的平行线,分别与轴交于点 ,连接 ,那么图中阴影部分的面积之和为___________.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知正比例函数y=2x与反比例函数y=(k>0)的图象交于A、B两点,且点A的横坐标为4,

(1)求k的值;

(2)根据图象直接写出正比例函数值小于反比例函数值时x的取值范围;

(3)过原点O的另一条直线l交双曲线y=(k>0)于P、Q两点(P点在第一象限),若由点A、P、B、Q为顶点组成的四边形面积为224,求点P的坐标.

【答案】(1) k=32 (2) x<﹣8或0<x<8 (3) P(﹣7+3 ,16+);或P(7+3,﹣16+

【解析】分析:(1)先将x=4代入正比例函数y=2x,可得出y=8,求得点A(4,8),再根据点AB关于原点对称,得出B点坐标,即可得出k的值;

(2)正比例函数的值小于反比例函数的值即正比例函数的图象在反比例函数的图象下方,根据图形可知在交点的右边正比例函数的值小于反比例函数的值.

(3)由于双曲线是关于原点的中心对称图形,因此以A、B、P、Q为顶点的四边形应该是平行四边形,那么△POA的面积就应该是四边形面积的四分之一即56.可根据双曲线的解析式设出P点的坐标,然后表示出△POA的面积,由于△POA的面积为56,由此可得出关于P点横坐标的方程,即可求出P点的坐标.

详解:(1)∵点A在正比例函数y=2x上,

把x=4代入正比例函数y=2x,

解得y=8,点A(4,8),

把点A(4,8)代入反比例函数y=,得k=32,

(2)∵点A与B关于原点对称,

B点坐标为(﹣4,﹣8),

由交点坐标,根据图象直接写出正比例函数值小于反比例函数值时x的取值范围,x<﹣8或0<x<8;

(3)∵反比例函数图象是关于原点O的中心对称图形,

∴OP=OQ,OA=OB,

四边形APBQ是平行四边形,

SPOA=S平行四边形APBQ×=×224=56,

设点P的横坐标为m(m>0且m≠4),

得P(m, ),

过点P、A分别做x轴的垂线,垂足为E、F,

点P、A在双曲线上,

∴SPOE=SAOF=16,

若0<m<4,如图,

∵SPOE+S梯形PEFA=SPOA+SAOF

∴S梯形PEFA=SPOA=56.

(8+)(4﹣m)=56.

m1=﹣7+3,m2=﹣7﹣3(舍去),

P(﹣7+3,16+);

若m>4,如图,

∵SAOF+S梯形AFEP=SAOP+SPOE

∴S梯形PEFA=SPOA=56.

×(8+)(m﹣4)=56,

解得m1=7+3,m2=7﹣3(舍去),

P(7+3,﹣16+).

点P的坐标是P(﹣7+3,16+);或P(7+3,﹣16+).

点睛:本题考查了待定系数法求反比例函数与一次函数的解析式和反比例函数y=k的几何意义.这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.利用数形结合的思想,求得三角形的面积.

型】解答
束】
23

【题目】如图,在梯形ABCD中,ADBC,AB=DC=AD=9,ABC=70°,点E,F分别在线段AD,DC上(点E与点A,D不重合),且∠BEF=110°.

(1)求证:△ABE∽△DEF.

(2)当点EAD中点时,求DF的长;

(3)在线段AD上是否存在一点E,使得F点为CD的中点?若存在,求出AE的长度;若不存在,试说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知正比例函数y=2x与反比例函数y=(k>0)的图象交于A、B两点,且点A的横坐标为4,

(1)求k的值;

(2)根据图象直接写出正比例函数值小于反比例函数值时x的取值范围;

(3)过原点O的另一条直线l交双曲线y=(k>0)于P、Q两点(P点在第一象限),若由点A、P、B、Q为顶点组成的四边形面积为224,求点P的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】某商场准备进一批两种不同型号的衣服,已知购进A种型号衣服9件,B种型号衣服10件,则共需1810元;若购进A种型号衣服12件,B种型号衣服8件,共需1880元;已知销售一件A型号衣服可获利18元,销售一件B型号衣服可获利30元,要使在这次销售中获利不少于699元,且A型号衣服不多于28件.

(1)求A、B型号衣服进价各是多少元?

(2)若已知购进A型号衣服是B型号衣服的2倍还多4件,则商店在这次进货中可有几种方案并简述购货方案.

【答案】(1)A种型号的衣服每件90元,B种型号的衣服100元;(2)有三种进货方案,具体见解析.

【解析】试题分析:(1)等量关系为:A种型号衣服9件×进价+B种型号衣服10件×进价=1810,A种型号衣服12件×进价+B种型号衣服8件×进价=1880;

(2)关键描述语是:获利不少于699元,且A型号衣服不多于28件.关系式为:18×A型件数+30×B型件数≥699,A型号衣服件数≤28.

试题解析:(1)设A种型号的衣服每件x元,B种型号的衣服y元,

则:

解之得.

答:A种型号的衣服每件90元,B种型号的衣服100元;

(2)设B型号衣服购进m件,则A型号衣服购进(2m+4)件,

可得:

解之得192m12,

∵m为正整数,

∴m=10、11、12,2m+4=24、26、28.

答:有三种进货方案:

(1)B型号衣服购买10件,A型号衣服购进24件;

(2)B型号衣服购买11件,A型号衣服购进26件;

(3)B型号衣服购买12件,A型号衣服购进28件。

点睛:点睛:本题主要考查二元一次方程组和一元一次不等式组的实际问题的应用,解题的关键是读懂题目的意思,根据题目给出的条件,设出未知数,分别找出甲组和乙组对应的工作时间,找出合适的等量关系,列出方程组,再求解.

型】解答
束】
21

【题目】如图,锐角ABC内接于O,若O的半径为6,sinA=,求BC的长.

查看答案和解析>>

同步练习册答案