科目: 来源: 题型:
【题目】如图,在等腰直角△ACB中,∠ACB=90°,O是斜边AB的中点,点D、E分别在直角边AC、BC上,且∠DOE=90°,DE交OC于点P.有下列结论:
①∠DEO=45°;
②△AOD≌△COE;
③S四边形CDOE=S△ABC;
④.
其中正确的结论序号为 .(把你认为正确的都写上)
查看答案和解析>>
科目: 来源: 题型:
【题目】在中,,点为直线上的一个动点(与点不重合),分别作和的角平分线,两角平分线所在直线交于点.
(1)若点在线段上,如图1.
①依题意补全图1;
②求的度数;
(2)当点在直线上运动时,的度数是否变化?若不变,请说明理由;若变化,画出相应的图形,并直接写出的度数.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,把一个点的横、纵坐标都乘以同一个实数,然后将得到的点先向右平移个单位,再向上平移个单位,得到点
(1)若,,,,则点坐标是_____;
(2)对正方形及其内部的每个点进行上述操作,得到正方形及其内部的点,其中点的对应点分别为.求;
(3)在(2)的条件下,己知正方形内部的一个点经过上述操作后得到的对应点与点重合,求点的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】某年级共有400名学生,为了解该年级学生上学的交通方式,从中随机抽取100名学生进行问卷调查,并对调查数据进行整理、描述和分析,下面给出了部分信息
A.不同交通方式学生人数分布统计图如下:
B.采用公共交通方式单程所花费时间(分钟)的频数分布直方图如下(数据分成6组:,,,,,);
根据以上信息,完成下列问题:
(1)补全频数分布直方图;
(2)根据不同交通方式学生人数所占的百分比,算出“私家车方式”对应扇形的圆心角是度_____.
(3)请你估计全年级乘坐公共交通上学有_____人,其中单程不少于60分钟的有_____人.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,AC=BC=6cm,点P 从点A 出发,沿AB方向以每秒cm的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒1cm 的速度向终点C运动,将△PQC沿BC翻折,点P的对应点为点P′.设Q点运动的时间 t 秒,若四边形QPCP′为菱形,则 t 的值为( )
A. B. 2 C. 2 D. 4
查看答案和解析>>
科目: 来源: 题型:
【题目】某仓库调拨一批物资,调进物资共用8小时,调进物资4小时后同时开始调出物资(调进与调出的速度保持不变).该仓库库存物资W(吨)与时间t(小时)之间的函数关系如图所示.则这批物资从开始调进到全部调出所需要的时间是( )
A. 8.4小时 B. 8.6小时 C. 8.8小时 D. 10小时
查看答案和解析>>
科目: 来源: 题型:
【题目】如果关于x的一元二次方程ax2+bx+c=0 (a≠0)有两个不相等的实数根,且其中一个根为另一个根的2倍,那么称这样的方程为“倍根方程”.例如,方程x2-6x+8=0的两个根是2和4,则方程x2-6x+8=0就是“倍根方程”.
(1)若一元二次方程x2-3x+c=0是“倍根方程”,则c= ;
(2)若(x-2) (mx-n)=0(m≠0)是“倍根方程”,求代数式4m2-5mn+n2的值;
(3)若方程ax2+bx+c=0 (a≠0)是倍根方程,且相异两点M(1+t,s),N(4-t,s),都在抛物线y=ax2+bx+c上,求一元二次方程ax2+bx+c=0 (a≠0)的根.
查看答案和解析>>
科目: 来源: 题型:
【题目】(题文)如图所示,二次函数y=-mx2+4m的顶点坐标为(0,2),矩形ABCD的顶点B,C在x轴上,A、D在抛物线上,矩形ABCD在抛物线与x轴所围成的图形内,且点A在点D的左侧.
(1)求二次函数的解析式;
(2)设点A的坐标为(x,y),试求矩形ABCD的周长p关于自变量x的函数解析式,并求出自变量x的取值范围;
(3)是否存在这样的矩形ABCD,使它的周长为9?试证明你的结论.
查看答案和解析>>
科目: 来源: 题型:
【题目】数学课上, 老师要求同学们利用三角板画两条平行线.老师说苗苗和小华两位同学画法都是正确的,两位同学的画法如下:
苗苗的画法:
①将含30°角的三角尺的最长边与直线a重合,另一块三角尺最长边与含30°角的三角尺的最短边紧贴;
②将含30°角的三角尺沿贴合边平移一段距离,画出最长边所在直线b,则b//a.
小华的画法:
①将含30°角三角尺的最长边与直线a重合,用虚线做出一条最短边所在直线;
②再次将含30°角三角尺的最短边与虚线重合,画出最长边所在直线b,则b//a.
请在苗苗和小华两位同学画平行线的方法中选出你喜欢的一种,并写出这种画图的依据.
答:我喜欢__________同学的画法,画图的依据是__________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com