科目: 来源: 题型:
【题目】(3分)如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有( )
A. 4个 B. 3个 C. 2个 D. 1个
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上),已知AB=80 m,DE=10 m,求障碍物B,C两点间的距离.(结果精确到0.1 m)(参考数据: ≈1.414,、≈1.732)
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(-5,1),B(-1,1),C(-4,3).
(1)若△A1B1C1与△ABC关于y轴对称,点A,B,C的对应点分别为A1,B1,C1,请画出△A1B1C1并写出A1,B1,C1的坐标;
(2)若点P为平面内不与C重合的一点,△PAB与△ABC全等,请写出点P的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知反比例函数的图象经过点P(2,﹣3).
(1)求该函数的解析式;
(2)若将点P沿x轴负方向平移3个单位,再沿y轴方向平移n(n>0)个单位得到点P′,使点P′恰好在该函数的图象上,求n的值和点P沿y轴平移的方向.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数(m≠0)的图象交于A、B两点,与x轴交于C点,点A的坐标为(n,6),点C的坐标为(﹣2,0),且tan∠ACO=2.
(1)求该反比例函数和一次函数的解析式;
(2)求点B的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,AC=BC,△ABC的高CD与角平分线AE相交点F,过点C作CH⊥AE于G,交AB于H.
(1)求∠BCH的度数;
(2)求证:CE=BH.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ACD和△BCE中, AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,AD与BE相交于点P,则∠BPD的度数为( )
A.110°B.125°C.130°D.155°
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,下列结论:①△AEF∽△CAB;②CF=2AF;③tan∠CAD=.其中正确的结论有 ( )
A. 3个 B. 2个 C. 1个 D. 0个
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,且当x=0和x=2时,y的值相等,直线y=3x-7与这条抛物线交于两点,其中一点横坐标为4,另一点是这条抛物线的顶点M.
(1)求顶点M的坐标.
(2)求这条抛物线对应的函数解析式.
(3)P为线段BM上一点(P不与点B,M重合),作PQ⊥x轴于点Q,连接PC,设OQ=t,四边形PQAC的面积为S,求S与t的函数解析式,并直接写出t的取值范围.
(4)在线段BM上是否存在点N,使△NMC为等腰三角形?若存在,求出点N的坐标,若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某公司生产的一种健身产品在市场上受到普遍欢迎,每年可在国内、国外市场上全部售完,该公司的年产量为6千件,若在国内市场销售,平均每件产品的利润(元)与国内销售数量(千件)的关系为:若在国外销售,平均每件产品的利润(元)与国外的销售数量t(千件)的关系为:
(1)用的代数式表示t为:t= ;当0<≤4时,与的函数关系式为:= ;当4≤< 时,=100;
(2)求每年该公司销售这种健身产品的总利润W(千元)与国内的销售数量x(千件)的函数关系式,并指出x的取值范围;
(3)该公司每年国内、国外的销量各为多少时,可使公司每年的总利润最大?最大值为多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com