相关习题
 0  357121  357129  357135  357139  357145  357147  357151  357157  357159  357165  357171  357175  357177  357181  357187  357189  357195  357199  357201  357205  357207  357211  357213  357215  357216  357217  357219  357220  357221  357223  357225  357229  357231  357235  357237  357241  357247  357249  357255  357259  357261  357265  357271  357277  357279  357285  357289  357291  357297  357301  357307  357315  366461 

科目: 来源: 题型:

【题目】等腰三角形一腰上的高与另一腰的夹角为50°,则该三角形的底角为____.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知OD=OC,添加下列四个条件中的一个,仍不能得到ODAOCB全等的是(

A.D=CB.OA=OBC.BD=ACD.AD=BC

查看答案和解析>>

科目: 来源: 题型:

【题目】已知:如图,直角△ABC 中,AC=BC,∠C=90°,∠CAB=ABC=45°,过点 B 作射线BDAB B,点 P BC 边上任一点,在射线上取一点 Q,使得 PQ=AP.

1)请依题意补全图形;

2)试判断 AP PQ 的位置关系,并加以证明.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知,如图:正方形ABCD,将RtEFG斜边EG的中点与点A重合,直角顶点F落在正方形的AB边上,RtEFG的两直角边分别交AB、AD边于P、Q两点,(点P与点F重合),如图1所示:

(1)求证:EP2+GQ2=PQ2

(2)若将RtEFG绕着点A逆时针旋转α(0°α90°),两直角边分别交AB、AD边于P、Q两点,如图2所示:判断四条线段EP、PF、FQ、QG之间是否存在什么确定的相等关系?若存在,证明你的结论.若不存在,请说明理由;

(3)若将RtEFG绕着点A逆时针旋转α(90°α180°),两直角边所在的直线分别交BA、AD两边延长线于P、Q两点,并判断四条线段EP、PF、FQ、QG之间存在何种确定的相等关系?按题意完善图3,请直接写出你的结论(不用证明).

查看答案和解析>>

科目: 来源: 题型:

【题目】学农期间我们完成了每日一题,进一步研究了角的平分线. 工人师傅常用角尺平分一个任意角. 作法如下:

如图,∠AOB 是一个任意角,在边 OAOB 上分别取 OM=ON 移动角尺,使角尺两边相同的刻度分别与 MN 重合. 过角尺顶点 C 的射线 OC 便是∠AOB 的平分线. 我们发现利用 SSS 证明两个三角形全等,从而证明∠AOC=BOC.

学习了轴对称的知识后,我们知道角是轴对称图形,角平分线 所在直线就是它的对称轴,爱动脑筋的小慧同学利用轴对称图形的性质发现了一种画角平分线的方法.

方法如下:如图 1,将两个全等的三角形纸片△DEF 和△MNL 的一组对应边分别与∠AOB 的一边共线,同时这条边所对顶点落在∠AOB 的另一条边上,则△DEF 和△MNL 的另一组对应边的交点 P 在∠AOB 的平分线上.

1)小慧的做法正确吗?说明理由:

小旭说:利用轴对称的性质,我只用刻度尺就可以画角平分线.(提示:刻度尺可以度量出相等的线段)

2)请你和小旭一样,只用刻度尺画出图 2 中∠QRS 的角平分线.(保留作图痕迹,不写作法)

查看答案和解析>>

科目: 来源: 题型:

【题目】在探究两个三角形满足两边和其中一边的对角对应相等(“SSA”)是否能判定两个三角形全等时,我们设计不同情形进行探究:

1)例如,当∠B 是锐角时,如图 BC=EF,∠B=∠E,在射线 EM 上有点 D,使 DF=AC,用尺规画出符合条件的点 D,则△ABC 和△DEF 的关系是( )

A.全等 B. 不全等 C. 不一定全等

我们进一步发现如果能确定这两个三角形的形状,那么SSA是成立的.

2)例如,已知:如图,在锐角△ABC 和锐角△DEF 中,AC=DFBC=EF,∠B=E. 求证:△ABC≌△DEF.

查看答案和解析>>

科目: 来源: 题型:

【题目】列方程或列方程组解应用题.

老京张铁路是1909年由“中国铁路之父”詹天佑主持设计建造的中国第一条干线铁路,全长约210千米,用“人”字形铁轨铺筑的方式解决了火车上山的问题.京张高铁是2022年北京至张家口冬奥会的重点配套交通基础设施,全长约175千米,预计2019年底建成通车.京张高铁的预设平均速度将是老京张铁路的5倍,可以提前5个小时到达,求京张高铁的平均速度.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,小兰用尺规作图作ABCAC上的高BH,作法如下:

①分别以点DE为圆心,大于DE的一半长为半径作弧两弧交于F

②作射线BF,交边AC于点H

③以B为圆心,BK长为半径作弧,交直线AC于点DE

④取一点K使KBAC的两侧;

所以BH就是所求作的高.其中顺序正确的作图步骤是(  )

A.①②③④B.④③①②C.②④③①D.④③②①

查看答案和解析>>

科目: 来源: 题型:

【题目】为了准备科技节创意销售,宏帆初2018级某同学到批发市场购买了一些甲、乙两种型号的小元件,甲型小元件的单价是6元,乙型小元件的单价是3元,该同学的创意作品每件需要的乙型小元件的个数是甲型小元件的个数的2倍,同时,为了控制成本,该同学购买小元件的总费用不超过480元.

(1)该同学最多可购买多少个甲型小元件?

(2)在该同学购买甲型小元件最多的前提下,用所购买的甲、乙两种型号的小元件全部制作成创意作品,在制作中其他费用共花520元,销售当天,该同学在成本价(购买小元件的费用+其他费用)的基础上每件提高2a%(10a50)标价,但无人问津,于是该同学在标价的基础上降低a%出售,最终,在活动结束时作品全部卖完,这样,该同学在本次活动中赚了a%,求a的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,一次函数y=kx+b(k0)的图象与反比例函双y=(m0)的阳象交于点c(n,3),与x轴、y轴分别交于点A、B,过点CCMx轴,垂足为M,若tanCAM=,OA=2.

(1)求反比例函数和一次函数的解析式;

(2)点D是反比例函数图象在第三象限部分上的一点,且到x轴的距离是3,连接AD、BD,求△ABD的面积.

查看答案和解析>>

同步练习册答案