【题目】为了准备科技节创意销售,宏帆初2018级某同学到批发市场购买了一些甲、乙两种型号的小元件,甲型小元件的单价是6元,乙型小元件的单价是3元,该同学的创意作品每件需要的乙型小元件的个数是甲型小元件的个数的2倍,同时,为了控制成本,该同学购买小元件的总费用不超过480元.
(1)该同学最多可购买多少个甲型小元件?
(2)在该同学购买甲型小元件最多的前提下,用所购买的甲、乙两种型号的小元件全部制作成创意作品,在制作中其他费用共花520元,销售当天,该同学在成本价(购买小元件的费用+其他费用)的基础上每件提高2a%(10<a<50)标价,但无人问津,于是该同学在标价的基础上降低a%出售,最终,在活动结束时作品全部卖完,这样,该同学在本次活动中赚了a%,求a的值.
【答案】(1)该同学最多可购买40个甲型小元件;(2)a的值为25.
【解析】
(1)设该同学购买x个甲型小元件,则购买2x个乙型小元件,根据总价=单价×数量结合该同学购买小元件的总费用不超过480元,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,取其内的最大正整数即可;
(2)设y=a%,根据该同学在本次活动中赚了a%,即可得出关于y的一元二次方程,解之即可得出结论.
(1)设该同学购买x个甲型小元件,则购买2x个乙型小元件,
根据题意得:6x+3×2x≤480,
解得:x≤40.
答:该同学最多可购买40个甲型小元件.
(2)设y=a%,
根据题意得:(520+480)×(1+2y)(1﹣y)=(520+480)×(1+y),
整理得:4y2﹣y=0,
解得:y=0.25或y=0(舍去),
∴a%=0.25,a=25.
答:a的值为25.
科目:初中数学 来源: 题型:
【题目】随着科技进步,无人机的应用越来越广,如图1,在某一时刻,无人机上的探测器显示,从无人机A处看一栋楼顶部B点的仰角和看与顶部B在同一铅垂线上高楼的底部C的俯角.
(1)如果上述仰角与俯角分别为30°与60°,且该楼的高度为30米,求该时刻无人机的竖直高度CD;
(2)如图2,如果上述仰角与俯角分别为α与β,且该楼的高度为m米.求用α、β、m表示该时刻无人机的竖直高度CD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,甲车到达C地后因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图2,结合图象信息解答下列问题:
(1)乙车的速度是 千米/时,乙车行驶的时间t= 小时;
(2)求甲车从C地按原路原速返回A地的过程中,甲车距它出发地的路程y与它出发的时间x的函数关系式;
(3)直接写出甲车出发多长时间两车相距80千米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC中,AB=6,AC=8,BC=11,任作一条直线将△ABC分成两个三角形,若其中有一个三角形是等腰三角形,则这样的直线最多有( )
A.5条B.6条C.7条D.8条
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知直线AB∥CD.
(1)如图1,直接写出∠ABE,∠CDE和∠BED之间的数量关系是 .
(2)如图2,BF,DF分别平分∠ABE,∠CDE,那么∠BFD和∠BED有怎样的数量关系?请说明理由.
(3)如图3,点E在直线BD的右侧,BF,DF仍平分∠ABE,∠CDE,请直接写出∠BFD和∠BED的数量关系 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图:正方形ABCD,将Rt△EFG斜边EG的中点与点A重合,直角顶点F落在正方形的AB边上,Rt△EFG的两直角边分别交AB、AD边于P、Q两点,(点P与点F重合),如图1所示:
(1)求证:EP2+GQ2=PQ2;
(2)若将Rt△EFG绕着点A逆时针旋转α(0°<α≤90°),两直角边分别交AB、AD边于P、Q两点,如图2所示:判断四条线段EP、PF、FQ、QG之间是否存在什么确定的相等关系?若存在,证明你的结论.若不存在,请说明理由;
(3)若将Rt△EFG绕着点A逆时针旋转α(90°<α<180°),两直角边所在的直线分别交BA、AD两边延长线于P、Q两点,并判断四条线段EP、PF、FQ、QG之间存在何种确定的相等关系?按题意完善图3,请直接写出你的结论(不用证明).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.
(1)直线BF垂直于直线CE于点F,交CD于点G(如图1),求证:AE=CG;
(2)直线AH垂直于直线CE,垂足为点H,交CD的延长线于点M(如图2),找出图中与BE相等的线段,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC是边长为6cm的等边三角形,点D从B点出发沿B→A方向在线段BA上以a cm/s速度运动,与此同时,点E从线段BC的某个端点出发,以b cm/s速度在线段BC上运动,当D到达A点后,D、E运动停止,运动时间为t(秒).
(1)如图1,若a=b=1,点E从C出发沿C→B方向运动,连AE、CD,AE、CD交于F,连BF.当0<t<6时:
①求∠AFC的度数;
②求的值;
(2)如图2,若a=1,b=2,点E从B点出发沿B→C方向运动,E点到达C点后再沿C→B方向运动.当t≥3时,连DE,以DE为边作等边△DEM,使M、B在DE两侧,求M点所经历的路径长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com