科目: 来源: 题型:
【题目】如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线平移至△FEG,DE、FG相交于点H.
(1)判断线段DE、FG的位置关系,并说明理由;
(2)连结CG,求证:四边形CBEG是正方形.
查看答案和解析>>
科目: 来源: 题型:
【题目】在如图的直角坐标系中,画出函数的图象,并结合图象回答下列问题:
(1)y的值随x值的增大而______(填“增大”或“减小”);
(2)图象与x轴的交点坐标是_____;图象与y轴的交点坐标是______;
(3)当x 时,y <0 ;
查看答案和解析>>
科目: 来源: 题型:
【题目】如图是二次函数图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(,y2)是抛物线上两点,则
y1>y2.其中说法正确的是( )
A. ①② B. ②③ C. ①②④ D. ②③④
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是__________
查看答案和解析>>
科目: 来源: 题型:
【题目】问题探究
(1)如图①,在△ABC 中,∠B=30°,E 是 AB 边上的点,过点 E 作 EF⊥BC 于 F,则的值为 .
(2)如图②,在四边形 ABCD 中,AB=BC=6,∠ABC=60°,对角线 BD 平分∠ABC,点E 是对角线 BD 上一点,求 AE+ BE的最小值.
问题解决
(3)如图③,在平面直角坐标系中,直线 y -x 4 分别于 x 轴,y 轴交于点 A、B,点 P 为直线 AB 上的动点,以 OP 为边在其下方作等腰 Rt△OPQ 且∠POQ=90°.已知点C(0,-4),点 D(3,0)连接 CQ、DQ,那么DQ CQ是否存在最小值,若存在求出其最小值及此时点 P 的坐标,若不存在请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC绕点C顺时针旋转得△A1B1C,当A1落在AB边上时,连接B1B,取BB1的中点D,连接A1D,则A1D的长度是 ( )
A. B. 2 C. 3 D. 2
查看答案和解析>>
科目: 来源: 题型:
【题目】某商店两次购进一批同型号的热水壶和保温杯,第一次购进 12 个热水壶和 15 个保温杯,共用去资金 2850 元,第二次购进 20 个热水壶和 30 个保温杯,用去资金 4900元(购买同一商品的价格不变)
(1)求每个热水壶和保温杯的采购单价各是多少元?
(2)若商场计划再购进同种型号的热水壶和保温杯共 80 个,求所需购货资金 w(元) ,购买热水壶的数量 m(个)的函数表达式.
(3)在(2)的基础上,若准备购买保温杯的数量是热水壶数量的 3 倍,则该商店需要准备多少元的购货资金?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com