精英家教网 > 初中数学 > 题目详情

【题目】问题探究

(1)如图①,在ABC 中,∠B=30°E AB 边上的点,过点 E EFBC F,则的值为 .

2)如图②,在四边形 ABCD 中,AB=BC=6,ABC=60°,对角线 BD 平分∠ABC,点E 是对角线 BD 上一点,求 AE+ BE的最小值.

问题解决

3)如图③,在平面直角坐标系中,直线 y -x 4 分别于 x 轴,y 轴交于点 AB,点 P 为直线 AB 上的动点,以 OP 为边在其下方作等腰 RtOPQ 且∠POQ=90°.已知点C0-4),点 D3,0)连接 CQDQ,那么DQ CQ是否存在最小值,若存在求出其最小值及此时点 P 的坐标,若不存在请说明理由.

【答案】(1) ;(2) ;(3)4.

【解析】

(1)利用直角三角形中,30°所对的直角边等于斜边的一半求解即可;

(2) EFBCF, 根据直角三角形中,30°所对的直角边等于斜边的一半,得到AE+BE=AE+EF ,再根据勾股定理得到AE+BE的最小值;

(3) PMy轴于M,QNy轴于N,易证△POM≌△OQN,根据当QN共线时,Q+NQ最小求解即可.

;(1) EFBC, ∴∠BFE=90°, B=30°, =;

(2)EFBCF, ∵∠ABC=60°,对角线 BD 平分∠ABC,∴∠DBC=30°, EF=BE, AE+BE=AE+EF, ∴当点AEF三点在一条直线时,AE+BE 最小,∵∠ABF=60°, ∴∠BAF=30°, AB=6, BF=AB=3, AF= , AE+BE的最小值为.

(3) y=-x+4, B(0,4),A(4,0),

PMy轴于M,QNy轴于N, ∴∠PMO=QNO=90°, ∵∠POM+MPO=POM+QON=90°∴∠MPO=QON, PO=QO, ∴△POM≌△OQN,BM=PM=ON=t,OM=NQ=CN=4-t, ∴无论P在任何位置△CNQ都为等腰三角形,∠NCQ=45°,Q点永远在直线AC上,作D点关于直线AC的对称点 , D(3,0), (4,-1),DQ+NQ=Q+NQ, ∴当QN共线时,Q+NQ最小,最小值是N=4.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图:在ABC中,BECF分别是ACAB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接ADAG

1)求证:AD=AG

2ADAG的位置关系如何,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点的坐标为(04),线段的位置如图所示,其中点的坐标为(),点的坐标为(3).

(1)将线段平移得到线段,其中点的对应点为,点的对应点为点.

①点平移到点的过程可以是:先向 平移 个单位长度,再向 平移 个单位长度;

②点的坐标为 .

(2)(1)的条件下,若点的坐标为(40),连接,画出图形并求的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线的对称轴为直线,与轴的一个交点坐标为,其部分图象如图所示,下列结论:

;②方程的两个根是;④时,的取值范围是;⑤时,增大而增大

其中结论正确的个数是(

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,若直线轴于点、交轴于点,将绕点逆时针旋转得到.过点的抛物线

求抛物线的表达式;

若与轴平行的直线秒钟一个单位长的速度从轴向左平移,交线段于点、交抛物线于点,求线段的最大值;

如图,点为抛物线的顶点,点是抛物线在第二象限的上一动点(不与点重合),连接,以为边作图示一侧的正方形.随着点的运动,正方形的大小、位置也随之改变,当顶点恰好落在轴上时,直接写出对应的点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在如图的直角坐标系中,画出函数的图象,并结合图象回答下列问题:

1y的值随x值的增大而______(填增大减小);

2)图象与x轴的交点坐标是_____;图象与y轴的交点坐标是______

3)当x 时,y 0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,小华剪了两条宽为1的纸条,交叉叠放在一起,且它们较小的交角为60°,则它们重叠部分的面积为(  )

A. 3 B. 2 C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于的一元二次方程的两个实数根的平方和为,那么的值是(

A. 5 B. -1 C. 5-1 D. -51

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在长度为1个单位长度的小正方形组成的长方形中,点ABC在小正方形的顶点上.

1)在图中画出与△ABC关于直线l成轴对称的△ABC′;

2)计算△ABC的面积;

3)在直线l上找一点P,使PB+PC的长最短.

查看答案和解析>>

同步练习册答案