相关习题
 0  357969  357977  357983  357987  357993  357995  357999  358005  358007  358013  358019  358023  358025  358029  358035  358037  358043  358047  358049  358053  358055  358059  358061  358063  358064  358065  358067  358068  358069  358071  358073  358077  358079  358083  358085  358089  358095  358097  358103  358107  358109  358113  358119  358125  358127  358133  358137  358139  358145  358149  358155  358163  366461 

科目: 来源: 题型:

【题目】如图,点P在∠MON的角平分线上,过点POP的垂线交OMONCDPAOMPBON,垂足分别为ABEPBD,则下列结论错误的是(  )

A.CPPDB.PAPBC.PEOED.OBCD

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,点AB分别在x轴的负半轴和y轴的正半轴上,点C2,﹣2),CACB分别交坐标轴于DECAAB,且CAAB

1)求点B的坐标;

2)如图2,连接DE,求证:BDAEDE

3)如图3,若点F为(40),点P在第一象限内,连接PF,过PPMPFy轴于点M,在PM上截取PNPF,连接POBN,过P作∠OPG45°BN于点G,求证:点GBN的中点.

查看答案和解析>>

科目: 来源: 题型:

【题目】阅读材料,用配方法求最值.

已知a,b为非负实数,∵a+b﹣2=(2+2﹣2=(20,a+b2,当且仅当“a=b”时,等号成立.示例:当x0时,求y=x++1的最小值;

解:y=(x++12=3,当x=,即x=1时,y的最小值为3.

(1)探究:当x0时,求y=的最小值;

(2)问题解决:随着人们生活水平的提高,汽车已成为越来越多家庭的交通工具,假设某种汽车的购车费用为10万元,每年应缴保险费等各类费用共计0.4万元,n年的保养,维修费用总和为万元,问这种汽车使用多少年报废最合算(即使用多少年的年平均费用最少,年平均费用=所有费用:年数n)?最少年平均费用为多少万元?

查看答案和解析>>

科目: 来源: 题型:

【题目】我县古田镇某纪念品商店在销售中发现:成功从这里开始的纪念品平均每天可售出20件,每件盈利40元.为了扩大销售量,增加盈利,尽快减少库存,该商店在今年国庆黄金周期间,采取了适当的降价措施,改变营销策略后发现:如果每件降价4元,那么平均每天就可多售出8件.商店要想平均每天在销售这种纪念品上盈利1200元,那么每件纪念品应降价多少元?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,△ABC中,AB=ACAD△ABC的角平分线,点OAB的中点,连接DO并延长到点E,使OE=OD,连接AEBE

1)求证:四边形AEBD是矩形;

2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】阅读下面材料,完成(1-3)题

数学课上,老师出示了这样一道题:如图,△ABD和△ACE中,ABADACAE,∠DAB=∠CAEα,连接DCBE交于点F,过AAGDC于点G,探究线段FGFEFC之间的数量关系,并证明.

同学们经过思考后,交流了自已的想法:

小明:通过观察和度量,发现线段BE与线段DC相等.

小伟:通过观察发现,∠AFEα存在某种数量关系.

老师:通过构造全等三角形,从而可以探究出线段FGFEFC之间的数量关系.

1)求证:BECD

2)求∠AFE的度数(用含α的式子表示);

3)探究线段FGFEFC之间的数量关系,并证明.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在菱形ABCD中,对角线AC,BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.

(1)证明:四边形ACDE是平行四边形;

(2)AC=4,BD=3,求△ADE的周长

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在ABC中,AB=ACAHBC,垂足为HD为直线BC上一动点(不与点BC重合),在AD的右侧作ADE,使得AE=AD,∠DAE=BAC,连接CE.

(1)D在线段BC上时,求证:BAD≌△CAE

(2)当点D运动到何处时,ACDE,并说明理由;

(3)CEAB时,若ABD中最小角为20°,试探究∠ADB的度数(直接写出结果,无需写出求解过程).

查看答案和解析>>

科目: 来源: 题型:

【题目】现有两个纸箱,每个纸箱内各装有4个材质、大小都相同的乒乓球,其中一个纸箱内4个小球上分别写有12344个数,另一个纸箱内4个小球上分别写有56784个数,甲、乙两人商定了一个游戏,规则是:从这两个纸箱中各随机摸出一个小球,然后把两个小球上的数字相乘,若得到的积是2的倍数,则甲得1分,若得到积是3的倍数,则乙得2.完成一次游戏后,将球分别放回各自的纸箱,摇匀后进行下一次游戏,最后得分高者胜出.

(1)请你通过列表(或树状图)分别计算乘积是2的倍数和3的倍数的概率;

(2)你认为这个游戏公平吗?为什么?若你认为不公平,请你修改得分规则,使游戏对双方公平.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知正方形ABCD的边长为4,以AB为一边作等边△ABE,使点E落在正方形ABCD的内部,连接ACBE于点F,连接CE、DE,则下列说法中:①△ADE≌△BCE;②∠ACE=30°;AF=CF; =2+,其中正确的有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步练习册答案