相关习题
 0  359142  359150  359156  359160  359166  359168  359172  359178  359180  359186  359192  359196  359198  359202  359208  359210  359216  359220  359222  359226  359228  359232  359234  359236  359237  359238  359240  359241  359242  359244  359246  359250  359252  359256  359258  359262  359268  359270  359276  359280  359282  359286  359292  359298  359300  359306  359310  359312  359318  359322  359328  359336  366461 

科目: 来源: 题型:

【题目】如图在等边ABC中,点D.E分别在边BCAB上,且BD=AEADCE交于点F

1)求证:AD=CE

2)求∠DFC的度数

查看答案和解析>>

科目: 来源: 题型:

【题目】问题提出:某物业公司接收管理某小区后,准备进行绿化建设,现要将一块四边形的空地(如图5,四边形ABCD)铺上草皮,但由于年代久远,小区规划书上该空地的面积数据看不清了,仅仅留下两条对角线AC,BD的长度分别为20cm,30cm及夹角∠AOB60°,你能利用这些数据,帮助物业人员求出这块空地的面积吗?

问题显然,要求四边形ABCD的面积,只要求出ABDBCD(也可以是ABCACD)的面积,再相加就可以了.

建立模型:我们先来解决较简单的三角形的情况:

如图1,ABC中,OBC上任意一点(不与B,C两点重合),连接OA,OA=a,BC=b,AOB=α(αOABC所夹较小的角),试用a,b,α表示ABC的面积.

解:如图2,作AMBC于点M,

∴△AOM为直角三角形.

又∵∠AOB=α,sinα=AM=OAsinα

∴△ABC的面积=BCAM=BCOAsinα=absinα.

问题解决:请你利用上面的方法,解决物业公司的问题.

如图3,四边形ABCD中,O为对角线AC,BD的交点,已知AC=20m,BD=30m,AOB=60°,求四边形ABCD的面积.(写出辅助线作法和必要的解答过程)

新建模型:若四边形ABCD中,O为对角线AC,BD的交点,已知AC=a,BD=b,AOB=α(αOABC所夹较小的角),直接写出四边形ABCD的面积=   

模型应用:如图4,四边形ABCD中,AB+CD=BC,ABC=BCD=60°,已知AC=a,则四边形ABCD的面积为多少?(新建模型中的结论可直接利用)

查看答案和解析>>

科目: 来源: 题型:

【题目】某公司营销A,B两种产品,根据市场调研,发现如下信息:

信息1:销售A种产品所获利润y(万元)与所售产品x(吨)之间存在二次函数关系

x=1时,y=1.4;当x=3时,y=3.6。

信息2:销售B种产品所获利润y(万元)与所售产品x(吨)之间存在正比例函数关系

根据以上信息,解答下列问题:

(1)求二次函数解析式;

(2)该公司准备购进A,B两种产品共10吨,请设计一个营销方案,使销售A,B两种产品获得的利润之和最大,最大利润是多少?

查看答案和解析>>

科目: 来源: 题型:

【题目】RtABCRtABD中,∠ABC=BAD=90°,AC=BD,AC,BD相交于点G,过点AAEDBCB的延长线于点E,过点BBFCADA的延长线于点F,AE,BF相交于点H.

(1)证明:ABD≌△BAC.

(2)四边形AHBG是什么样的四边形,请猜想并证明.

(3)若使四边形AHBG是正方形,还需在RtABC添加一个什么条件?请添加条件并证明.

查看答案和解析>>

科目: 来源: 题型:

【题目】有公路l1同侧、l2异侧的两个城镇AB,如下图.电信部门要修建一座信号发射塔,按照设计要求,发射塔到两个城镇AB的距离必须相等,到两条公路l1l2的距离也必须相等,发射塔C应修建在什么位置?请用尺规作图找出所有符合条件的点,注明点C的位置.(保留作图痕迹,不要求写出画法)

查看答案和解析>>

科目: 来源: 题型:

【题目】教师办公室有一种可以自动加热的饮水机,该饮水机的工作程序是:放满水后,接通电源,则自动开始加热,每分钟水温上升10 ℃,待加热到100 ℃,饮水机自动停止加热,水温开始下降,水温y()和通电时间x(min)成反比例函数关系,直至水温降至室温,饮水机再次自动加热,重复上述过程.设某天水温和室温均为20 ℃,接通电源后,水温y()和通电时间x(min)之间的关系如图所示,回答下列问题:

(1)分别求出当0x88xa时,yx之间的函数关系式;

(2)求出图中a的值;

(3)李老师这天早上730将饮水机电源打开,若他想在810上课前喝到不低于40 ℃的开水,则他需要在什么时间段内接水?

查看答案和解析>>

科目: 来源: 题型:

【题目】南沙群岛是我国固有领土,现在我南海渔民要在南沙某海岛附近进行捕鱼作业,当渔船航行至B处时,测得该岛位于正北方向海里的C处,为了防止某国还巡警干扰,就请求我A处的鱼监船前往C处护航,已知C位于A处的北偏东45°方向上,A位于B的北偏西30°的方向上,求AC之间的距离.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在ABC中, A=80 ABCACD的平分线交于点A1,得A1 A1BCA1CD的平分线相交于点A2,得A2;……; A7BCA7CD的平分线相交于点A8,得A8,则A8的度数为()

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同.

1)若他去买一瓶饮料,则他买到奶汁的概率是

2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图或列表法求出他恰好买到雪碧和奶汁的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,∠ABC,∠ACB的平分线相交于点F,过点F作DE∥BC,交AB于D,交AC于E,那么下列结论正确的是:①△BDF,△CEF都是等腰三角形;②DE=BD+CE;③△ADE的周长为AB+AC;④BD=CE.(  )

A. ③④ B. ①② C. ①②③ D. ②③④

查看答案和解析>>

同步练习册答案