相关习题
 0  359151  359159  359165  359169  359175  359177  359181  359187  359189  359195  359201  359205  359207  359211  359217  359219  359225  359229  359231  359235  359237  359241  359243  359245  359246  359247  359249  359250  359251  359253  359255  359259  359261  359265  359267  359271  359277  359279  359285  359289  359291  359295  359301  359307  359309  359315  359319  359321  359327  359331  359337  359345  366461 

科目: 来源: 题型:

【题目】在平面直角坐标系中,平行四边形的顶点的坐标分别是, ,把线段三等分,延长分别交于点,连接, 则下列结论:; ③四边形的面积为;,其中正确的有( .

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知关于x的一元二次方程x2+(2m+1)x+m2﹣2=0.

(1)若该方程有两个实数根,求m的最小整数值;

(2)若方程的两个实数根为x1,x2,且(x1﹣x22+m2=21,求m的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】为了响应绿水青山就是金山银山的号召,建设生态文明,某工厂自20191月开始限产并进行治污改造,其月利润(万元)与月份之间的变化如图所示,治污完成前是反比例函数图象的一部分,治污完成后是一次函数图象的部分,下列选项错误的是(

A.4月份的利润为万元

B.污改造完成后每月利润比前一个月增加万元

C.治污改造完成前后共有个月的利润低于万元

D.9月份该厂利润达到万元

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,在△ABC中,∠ACB=90°,AMBC边的中线,CN⊥AMN点,连接BN,求证:

(1)△MCN∽△MAC;

(2)∠NBM=∠BAM.

查看答案和解析>>

科目: 来源: 题型:

【题目】有一块两直角边长分别为AC=3cmBC=4cm的直角三角形铁皮,要利用它来裁剪一个正方形,有两种方法:一种是正方形的一边在直角三角形的斜边上,另两个顶点在两条直角边上,如图(1);另一种是一组邻边在直角三角形的两直角边上,另一个顶点在斜边上,如图(2).用计算说明两种情形下正方形的面积哪个大?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,RtABO的顶点A是双曲线y与直线y=-x(k+1)在第二象限的交点.ABx轴于B,且SABO

(1)求这两个函数的解析式;

(2)求直线与双曲线的两个交点AC的坐标和AOC的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】 已知,反比例函数y=的图象和一次函数的图象交于AB两点,点A的横坐标是-1,点B的纵坐标是-1

1)求这个一次函数的表达式;

2)若点Pmn)在反比例函数图象上,且点P关于x轴对称的点Q恰好落在一次函数的图象上,求m2+n2的值;

3)若Mx1y1),Nx2y2)是反比例函数在第一象限图象上的两点,满足x2-x1=2y1+y2=3,求△MON的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】小明想测量一棵树的高度,他发现树的影子恰好落在地面和一垛墙上,如图,此时测得地面上的影长为8米,墙上的影长为4米.同一时刻,一根长为1米且垂直于地面放置的标杆在地面上的影长为2米,则树的高度为________

查看答案和解析>>

科目: 来源: 题型:

【题目】 在正方形ABCD中.

1)如图1,点EF分别在BCCD上,AEBF相交于点O,∠AOB=90°,试判断AEBF的数量关系,并说明理由;

2)如图2,点EFGH分别在边BCCDDAAB上,EGFH相交于点O,∠GOH=90°,且EG=7,求FH的长;

3)如图3,点EF分别在BCCD上,AEBF相交于点O,∠AOB=90°,若AB=5,图中阴影部分的面积与正方形的面积之比为45,求△ABO的周长.

查看答案和解析>>

科目: 来源: 题型:

【题目】 先阅读下面的材料,再解答下面的问题:如果两个三角形的形状相同,则称这两个三角形相似.如图1,△ABC与△DEF形状相同,则称△ABC与△DEF相似,记作△ABC∽△DEF.那么,如何说明两个三角形相似呢?我们可以用“两角分别相等的三角形相似”加以说明.用数学语言表示为:

如图1:在△ABC与△DEF中,∵∠A=∠D,∠B=∠E,∴△ABC∽△DEF

请你利用上述定理解决下面的问题:

1)下列说法:①有一个角为50°的两个等腰三角形相似;②有一个角为100°的两个等腰三角形相似;③有一个锐角相等的两个直角三角形相似;④两个等边三角形相似.其中正确的是______(填序号);

2)如图2,已知ABCDADBC相交于点O,试说明△ABO∽△DCO

3)如图3,在平行四边形ABCD中,EDC上一点,连接AEFAE上一点,且∠BFE=∠C,求证:△ABF∽△EAD

查看答案和解析>>

同步练习册答案