【题目】如图,Rt△ABO的顶点A是双曲线y=与直线y=-x-(k+1)在第二象限的交点.AB⊥x轴于B,且S△ABO=.
(1)求这两个函数的解析式;
(2)求直线与双曲线的两个交点A.C的坐标和△AOC的面积.
【答案】(1)y=﹣,y=﹣x+2
(2)A为(﹣1,3),C为(3,﹣1),面积是4
【解析】试题分析:(1)欲求这两个函数的解析式,关键求k值.根据反比例函数性质,k绝对值为且为负数,由此即可求出k;
(2)交点A、C的坐标是方程组的解,解之即得;
(3)从图形上可看出△AOC的面积为两小三角形面积之和,根据三角形的面积公式即可求出.
解:(1)设A点坐标为(x,y),且x<0,y>0,
则S△ABO=|BO||BA|=(﹣x)y=,
∴xy=﹣3,
又∵y=,
即xy=k,
∴k=﹣3.
∴所求的两个函数的解析式分别为y=﹣,y=﹣x+2;
(2)由y=﹣x+2,
令x=0,得y=2.
∴直线y=﹣x+2与y轴的交点D的坐标为(0,2),
A、C两点坐标满足
∴交点A为(﹣1,3),C为(3,﹣1),
∴S△AOC=S△ODA+S△ODC=OD(|x1|+|x2|)=×2×(3+1)=4.
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,AC=BC=6cm,点P从点A出发,沿AB方向以每秒cm的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒1cm的速度向终点C运动,将△PQC沿BC翻折,点P的对应点为点P′.设点Q运动的时间为t秒,若四边形QPCP′为菱形,则t的值为( )
A. B.2 C.2 D.3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在下列条件中,△ABC不是直角三角形的是 ( )
A. b2=a2-c2 B. ∠A:∠B:∠C=3:4:5
C. ∠C=∠A-∠B D. a2:b2:c2=1:3:2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将一副三角尺如图①摆放(在Rt△ABC中,∠ACB=90°,∠B=60°;在Rt△DEF中,∠EDF=90°,∠E=45°)点D为AB的中点,DE交AC于点P,DF经过点C.
(1)求∠ADE的度数;
(2)如图②,将△DEF绕点D顺时针方向旋转角α(0°<α<60°),此时的等腰直角三角尺记为△DE′F′,DE′交AC于点M,DF′交BC于点N,试判断的值是否随着α的变化而变化?如果不变,请求出的值;反之,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】操作与探索:
在图①~③中,△ABC的面积为a.
(1)如图①,延长△ABC的边BC到点D,使CD=BC,连接DA,若△ACD的面积为S1,则S1=________(用含a的式子表示);
(2)如图②,延长△ABC的边BC到点D,延长边CA到点E,使CD=BC,AE=CA,连接DE,若△DEC的面积为S2,则S2=________(用含a的式子表示),请说明理由;
(3)如图③,在图②的基础上延长AB到点F,使BF=AB,连接FD,FE,得到△DEF,若阴影部分的面积为S3,则S3=________(用含a的式子表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】填写下面证明过程中的推理依据:
已知AD⊥BC,FG⊥BC,垂足分别为D、G,且∠1=∠2,求证∠BDE=∠C.
证明:∵AD⊥BC,FG⊥BC (已知),
∴∠ADC=∠FGC=90°____________.
∴AD∥FG______________________.
∴∠1=∠3___________________
又∵∠1=∠2,(已知),
∴∠3=∠2____________.
∴ED∥AC_____________.
∴∠BDE=∠C______________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某工艺品厂生产一种汽车装饰品,每件生产成本为20元,销售价格在30元至80元之间(含30元和80元),销售过程中的管理、仓储、运输等各种费用(不含生产成本)总计50万元,其销售量y(万个)与销售价格(元/个)的函数关系如图所示.
(1)当30≤x≤60时,求y与x的函数关系式;
(2)求出该厂生产销售这种产品的纯利润w(万元)与销售价格x(元/个)的函数关系式;
(3)销售价格应定为多少元时,获得利润最大,最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,点C的坐标为(0,3),点A在x轴的负半轴上,点D、M分别在边AB、OA上,且AD=2DB,AM=2MO,一次函数y=kx+b的图象过点D和M,反比例函数y=的图象经过点D,与BC的交点为N.
(1)求反比例函数和一次函数的解析式;
(2)若点P在直线DM上,且使△OPM的面积与四边形OMNC的面积相等,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线l1∥l2,且l3和l1,l2分别交于A,B两点,点P在AB上.
(1)试找出∠1,∠2,∠3之间的关系并说出理由;
(2)如果点P在A,B两点之间运动,问∠1,∠2,∠3之间的关系是否发生变化?
(3)如果点P在A,B两点外侧运动,试探究∠1,∠2,∠3之间的关系(点P和A,B不重合).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com