【题目】填写下面证明过程中的推理依据:
已知AD⊥BC,FG⊥BC,垂足分别为D、G,且∠1=∠2,求证∠BDE=∠C.
证明:∵AD⊥BC,FG⊥BC (已知),
∴∠ADC=∠FGC=90°____________.
∴AD∥FG______________________.
∴∠1=∠3___________________
又∵∠1=∠2,(已知),
∴∠3=∠2____________.
∴ED∥AC_____________.
∴∠BDE=∠C______________.
【答案】 垂直的定义 同位角相等,两直线平行 两直线平行,同位角相等 等量代换 内错角相等,两直线平行 两直线平行,同位角相等
【解析】试题分析: 根据平行线的判定定理易证AD∥FG,又由平行线的性质,已知条件,利用等量代换推知∠DAC=∠2,则ED∥AC,所以由“两直线平行,同位角相等”证得结论.
试题解析: 理由:∵AD⊥BC,FG⊥BC(已知),∴∠ADC=∠FGC=90°(垂直的定义),
∴AD∥FG(同位角相等,两直线平行),∴∠1=∠3(两直线平行,同位角相等),
又∵∠1=∠2(已知),∴∠3=∠2(等量代换),∴ED∥AC(内错角相等,两直线平行),
∴∠BDE=∠C(两直线平行,同位角相等.)
科目:初中数学 来源: 题型:
【题目】推理填空:如图,已知∠B=∠CGF,∠DGF=∠F,求证∠B+∠F=180°.
证明:∵∠B= (已知),
∴AB∥C( ),
∵∠DGF= (已知),
∴CD∥EF( ),
∴AB∥ ( )
∴∠B+ =180°( ).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把下列各数填入相应的括号内
-π, ,3.1, ,0.8080080008...(相邻两个8之间0的个数逐次增加1), -, , ,
整数集合{ }
负分数集合{ …}
正数集合{ …}
负数集合{ …}
有理数集合{ …}
无理数集合{ …}
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠A=60°,BE⊥AC,垂足为E,CF⊥AB,垂足为F,点D是BC的中点,BE,CF交于点M.
(1)如果AB=AC,求证:△DEF是等边三角形;
(2)如果AB≠AC,试猜想△DEF是不是等边三角形?如果△DEF是等边三角形,请加以证明;如果△DEF不是等边三角形,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABO的顶点A是双曲线y=与直线y=-x-(k+1)在第二象限的交点.AB⊥x轴于B,且S△ABO=.
(1)求这两个函数的解析式;
(2)求直线与双曲线的两个交点A.C的坐标和△AOC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为提高饮水质量,越来越多的居民开始选购家用净水器.一商家抓住商机,从厂家购进了A、B两种型号家用净水器共160台,A型号家用净水器进价是150元/台,B型号家用净水器进价是350元/台,购进两种型号的家用净水器共用去36000元.
(1)求A、B两种型号家用净水器各购进了多少台;
(2)为使每台B型号家用净水器的毛利润是A型号的2倍,且保证售完这160台家用净水器的毛利润不低于11000元,求每台A型号家用净水器的售价至少是多少元?(注:毛利润=售价﹣进价)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,D、E分别在边AB、AC上,DE∥BC.
(1)试问△ADE是否是等腰三角形,并说明理由.
(2)若M为DE上的点,且BM平分,CM平分,若的周长为20,BC=8.求的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知四边形ABCD中,AD∥BC,AP平分∠DAB,BP平分∠ABC,它们的交点P在线段CD上,下面的结论:①AP⊥BP;②点P到直线AD,BC的距离相等;③PD=PC.其中正确的结论有( )
A. ①②③ B. ①② C. ① D. ②
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,有A、B两动点在线段MN上各自做不间断往返匀速运动(即只要动点与线段MN的某一端点重合则立即转身以同样的速度向MN的另一端点运动,与端点重合之前动点运动方向、速度均不改变),已知A的速度为3米/秒,B的速度为2米/秒
(1)已知MN=100米,若B先从点M出发,当MB=5米时A从点M出发,A出发后经过 秒与B第一次重合;
(2)已知MN=100米,若A、B同时从点M出发,经过 秒A与B第一次重合;
(3)如图2,若A、B同时从点M出发,A与B第一次重合于点E,第二次重合于点F,且EF=20米,设MN=s米,列方程求s.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com