精英家教网 > 初中数学 > 题目详情

【题目】推理填空:如图,已知∠BCGFDGFF,求证∠BF180°.

证明:∵∠B= (已知)

ABC( )

∵∠DGF= (已知)

CDEF( )

AB ( )

∴∠B+ =180°( ).

【答案】CGF同位角相等,两直线平行F内错角相等,两直线平行EF平行于同一条直线的两条直线平行F两直线平行,同旁内角互补

【解析】试题分析:根据平行线的判定定理得出ABCDCDEF,从而得出ABEF,由平行线的性质得出

试题解析:证明::∵∠B=CGF(已知)

ABCD(同位角相等两直线平行)

∵∠DGF=F(已知)

CDEF

ABEF(平行于同一直线的两直线平行)

(两直线平行同旁内角互补)

故答案为:CGF,同位角相等两直线平行,∠F内错角相等,两直线平行,EF平行于同一条直线的两条直线平行,F,两直线平行同旁内角互补.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,点P(1,0).点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(-1,1),第3次向上跳动1个单位至点P3,第4次向右跳动3个单位至点P4,第5次又向上跳动1个单位至点P5,第6次向左跳动4个单位至点P6,…….照此规律,点P第100次跳动至点P100的坐标是( )

A. (-26,50) B. (-25,50) C. (26,50) D. (25,50)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商家预测一种应季衬衫能畅销市场,就用13 200元购进了一批这种衬衫,面市后果然供不应求,商家又用28 800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.

(1)该商家购进的第一批衬衫是多少件?

(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完利润率不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】图(1)是我们常见的“箭头图”,其中隐藏着哪些数学知识呢?下面请你解决以下问题:

(1)观察如图(1)“箭头图”,试探究BDC与∠A、∠B、∠C之间大小的关系,并说明理由;

(2)请你直接利用以上结论,回答下列两个问题:

如图(2),把一块三角板XYZ放置在ABC上,使其两条直角边XY、XZ恰好经过点B、C.若A=50°,则∠ABX+∠ACX=   

如图(3),∠ABD,∠ACD的五等分线分别相交于点G1、G2、G3、G4,若∠BDC=135°,∠BG1C=67°,求A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,C=90°,AC=BC=6cm,点P从点A出发,沿AB方向以每秒cm的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒1cm的速度向终点C运动,将PQC沿BC翻折,点P的对应点为点P.设点Q运动的时间为t秒,若四边形QPCP为菱形,则t的值为( )

A. B.2 C.2 D.3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】何老师安排喜欢探究问题的小明解决某个问题前,先让小明看了一个有解答过程的例题.

例:若m2+2mn+2n2﹣6n+9=0,求m和n的值.

解:∵m2+2mn+2n2﹣6n+9=0

∴m2+2mn+n2+n2﹣6n+9=0

∴(m+n)2+(n﹣3)2=0

∴m+n=0,n﹣3=0∴m=﹣3,n=3

为什么要对2n2进行了拆项呢?

聪明的小明理解了例题解决问题的方法,很快解决了下面两个问题.相信你也能很好的解决下面的这两个问题,请写出你的解题过程..

解决问题:

(1)若x2﹣4xy+5y2+2y+1=0,求xy的值;

(2)已知a、b、c是△ABC的三边长,满足a2+b2=10a+12b﹣61,c是△ABC中最短边的边长,且c为整数,那么c可能是哪几个数?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)若a是(-4)2的平方根,b的一个平方根是2,求式子ab的立方根;

(2)实数ab互为相反数,cd互为倒数,x的绝对值为,求式子x2+(abcd)x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等边ABC中,点DE分别在边BCAB上,且BD=AEADCE交于点F

1)求证:AD=CE

2)求∠DFC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】填写下面证明过程中的推理依据:

已知AD⊥BC,FG⊥BC,垂足分别为D、G,且∠1=∠2,求证∠BDE=∠C.

证明:∵AD⊥BC,FG⊥BC (已知),

∴∠ADC=∠FGC=90°____________

∴AD∥FG______________________

∴∠1=∠3___________________

又∵∠1=∠2,(已知),

∴∠3=∠2____________

∴ED∥AC_____________

∴∠BDE=∠C______________

查看答案和解析>>

同步练习册答案