科目: 来源: 题型:
【题目】已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0)、C(0,3),与x轴交于另一点B,抛物线的顶点为D.
(1)求此二次函数解析式;
(2)连接DC、BC、DB,求证:△BCD是直角三角形;
(3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】二次函数y=ax2+bx+c (a≠0)的图象如图所示,对称轴是x=-1.下列结论:①ab>0;②b2>4ac;③a-b+2c<0;④8a+c<0.其中正确的是( )
A. ③④ B. ①②③ C. ①②④ D. ①②③④
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,∠B=90°,AB=12,BC=24,动点P从点A开始沿边AB向终点B以每秒2个单位长度的速度移动,动点Q从点B开始沿边BC以每秒4个单位长度的速度向终点C移动,如果点P、Q分别从点A、B同时出发,那么△PBQ的面积S随出发时间t(s)如何变化?写出函数关系式及t的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知抛物线y=ax2+bx+3的图象与x轴交于A、B两点,与y轴交于点C,且点C、D是抛物线上的一对对称点
【1】求抛物线的解析式
【2】求点D的坐标,并在图中画出直线BD
【3】求出直线BD的一次函数解析式,并根据图象回答:当x满足什么条件时,上述二次函数的值大于该一次函数的值
查看答案和解析>>
科目: 来源: 题型:
【题目】已知:二次函数y=(n﹣1)x2+2mx+1图象的顶点在x轴上.
(1)请写出m与n的关系式,并判断已知中函数图象的开口方向;
(2)是否存在整数m,n的值,使函数图象的对称轴与x轴的交点横坐标为整数?若存在,请求出m,n的值;若不存在,请说明理由;
(3)若y关于x的函数关系式为y=nx2﹣m2x﹣2n﹣2
①当n≠0时,求该函数必过的定点坐标;
②探索这个函数图象与坐标轴有两个交点时n的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,抛物线与轴交于、两点(点在点的左侧),点的坐标为,与轴交于点,作直线.动点在轴上运动,过点作轴,交抛物线于点,交直线于点,设点的横坐标为.
(Ⅰ)求抛物线的解析式和直线的解析式;
(Ⅱ)当点在线段上运动时,求线段的最大值;
(Ⅲ)当以、、、为顶点的四边形是平行四边形时,直接写出的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,反比例函数(x>0)与正比例函数y=kx、 (k>1)的图象分别交于点A、B,若∠AOB=45°,则△AOB的面积是________.
查看答案和解析>>
科目: 来源: 题型:
【题目】(3分)如图,在直角坐标系中,直线与坐标轴交于A、B两点,与双曲线()交于点C,过点C作CD⊥x轴,垂足为D,且OA=AD,则以下结论:
①;
②当0<x<3时,;
③如图,当x=3时,EF=;
④当x>0时,随x的增大而增大,随x的增大而减小.
其中正确结论的个数是( )
A.1 B.2 C.3 D.4
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知反比例函数y=(k≠0)的图象过点A(-3,2).
(1)求这个反比例函数的解析式;
(2)若B(x1,y1),C(x2,y2),D(x3,y3)是这个反比例函数图象上的三个点,若x1>x2>0>x3,请比较y1,y2,y3的大小,并说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】下列命题错误的是( )
A. 如果y与x成反比例关系,那么x也与y成反比例关系
B. 如果y与z成反比例关系,z与x成正比例关系,且x≠0,那么y与x成反比例关系
C. 如果y与z成正比例关系,z与x成反比例关系,且x≠0,那么y与x成反比例关系
D. 如果y与z成反比例关系,z与x成反比例关系,那么y与x成反比例关系
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com