精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线轴交于两点(点在点的左侧),点的坐标为,与轴交于点,作直线.动点轴上运动,过点轴,交抛物线于点,交直线于点,设点的横坐标为

(Ⅰ)求抛物线的解析式和直线的解析式;

(Ⅱ)当点在线段上运动时,求线段的最大值;

(Ⅲ)当以为顶点的四边形是平行四边形时,直接写出的值.

【答案】(1)y=﹣x2+2x+3,y=﹣x+3;(2)当m=时,MN有最大值,MN的最大值为;(3)

【解析】(1)由A、C两点的坐标利用待定系数法可求得抛物线解析式,则可求得B点坐标,再利用待定系数法可求得直线BC的解析式;

(2)用m可分别表示出N、M的坐标,则可表示出MN的长,再利用二次函数的最值可求得MN的最大值;

(3) 由条件可得出MN=OC,结合(2)可得到关于m的方程,可求得m的值

本题解析:

(1)∵抛物线过A、C两点,

∴代入抛物线解析式可得 ,解得

∴抛物线解析式为y=﹣x2+2x+3,

令y=0可得,﹣x2+2x+3=0,解x1=﹣1,x2=3,

∵B点在A点右侧,

∴B点坐标为(3,0),

设直线BC解析式为y=kx+s,

把B、C坐标代入可得 ,解得

∴直线BC解析式为y=﹣x+3;

(2)∵PM⊥x轴,点P的横坐标为m,

∴M(m,﹣m2+2m+3),N(m,- m+3),

∵P在线段OB上运动,

∴M点在N点上方,

∴MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m=﹣(m﹣2+

∴当m=时,MN有最大值,MN的最大值为

(3)∵PM⊥x轴,

∴MN∥OC,

当以C、O、M、N为顶点的四边形是平行四边形时,则有OC=MN,

当点P在线段OB上时,则有MN=﹣m2+3m,

∴﹣m2+3m=3,此方程无实数根,

当点P不在线段OB上时,则有MN=﹣m+3﹣(﹣m2+2m+3)=m2﹣3m,

∴m2﹣3m=3,解得m=或m=

综上可知当以C、O、M、N为顶点的四边形是平行四边形时,m的值为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线轴的负半轴交于点,与轴交于点,连结,点C(6)在抛物线上,直线轴交于点

(1)的值及直线的函数表达式;

(2)轴正半轴上,点轴正半轴上,连结与直线交于点,连结并延长交于点,若的中点.

①求证:

②设点的横坐标为,求的长(用含的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】Rt△ABC中,∠ACB=90°,AC:BC=4:3,O是BC上一点,⊙O交AB于点D,交BC延长线于点E.连接ED,交AC于点G,且AG=AD.

(1)求证:AB与⊙O相切;

(2)设⊙O与AC的延长线交于点F,连接EF,若EF∥AB,且EF5,求BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在四边形中,.点为边上一点,将沿直线折叠,使点落在四边形对角线上的点处,的延长线交直线于点

可以是的中点吗?请说明理由;

求证:

.当四边形为平行四边形时,求应满足的关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数y=(m≠0)的图象如图所示,有以下结论:①m<1;②在每个分支上yx的增大而增大;③若点A(-2,a),点B(4,b)在图象上,则a<b;④若点P(x,y)在图象上,则点P(-x,-y)也在图象上,则下面选项正确的是( )

A. ①②③ B. ①②④ C. ①③④ D. ①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx﹣3a经过点A﹣10)、C03),与x轴交于另一点B,抛物线的顶点为D

1)求此二次函数解析式;

2)连接DCBCDB,求证:△BCD是直角三角形;

3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校八年级甲.乙两班分别选5名同学参加学雷锋读书活动演讲比赛,其预赛成绩如图:

1)根据上图求出下表所缺数据:

平均数

中位数

众数

方差

甲班

8.5

8.5

乙班

8

1.6

2)根据上表中的平均数、中位数和方差你认为哪班的成绩较好?并说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将函数y= (x-2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A′,B′,若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,河的两岸l1l2相互平行,ABl1上的两点,CDl2上的两点,某人在点A处测得∠CAB=90°DAB=30°,再沿AB方向前进20米到达点E(点E在线段AB上),测得∠DEB=60°,求CD两点间的距离.

查看答案和解析>>

同步练习册答案