相关习题
 0  360369  360377  360383  360387  360393  360395  360399  360405  360407  360413  360419  360423  360425  360429  360435  360437  360443  360447  360449  360453  360455  360459  360461  360463  360464  360465  360467  360468  360469  360471  360473  360477  360479  360483  360485  360489  360495  360497  360503  360507  360509  360513  360519  360525  360527  360533  360537  360539  360545  360549  360555  360563  366461 

科目: 来源: 题型:

【题目】如图,在直角梯形ABCD中,ADBC,ABBC,BC=5,CD=6,DCB=60°,等边PMN(N为固定点)的边长为x,边MN在直线BC上,NC=8.将直角梯形ABCD绕点C按逆时针方向旋转到①的位置,再绕点D1按逆时针方向旋转到②的位置,如此旋转下去.

(1)将直角梯形按此方法旋转四次,如果等边PMN的边长为x≥5+3,求梯形与等边三角形的重叠部分的面积;

(2)将直角梯形按此方法旋转三次,如果梯形与等边三角形的重叠部分的面积是,求等边PMN的边长x的范围.

(3)将直角梯形按此方法旋转三次,如果梯形与等边三角形的重叠部分的面积是梯形面积的一半,求等边PMN的边长x.

查看答案和解析>>

科目: 来源: 题型:

【题目】某市高铁站将于今年年底使用,计划在广场内种植A、B两种花木共2000棵,若种植A种花木的数量比种植B种花木数量的3倍多400棵.

(1)求种植A、B两种花木的数量分别是多少棵?

(2)如果园林处安排12人同时种植这两种花木,每人每天能种植A种花木40棵或B种花木30棵,应分别安排多少人种植A种花木和B种花木,才能确保同时完成各自的任务?

查看答案和解析>>

科目: 来源: 题型:

【题目】某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核.甲、乙、丙各项得分如下表:

85

80

75

80

90

73

83

79

90

(1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺序.

(2)该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分(不计其他因素条件),请你说明谁将被录用.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,反比例函数y=的图象过点A(1,3),请根据下列条件试用无刻度的直尺分别在图1和图2中按要求画图.

(1)在图1中取一点B,使其坐标为(1,3);

(2)在图2中,在(1)中画图的基础上,画一个平行四边形ACBD.

查看答案和解析>>

科目: 来源: 题型:

【题目】平面直角坐标系中,以点P(2,a)为圆心的⊙Py轴相切,直线y=x与⊙P相交于点A、B,且AB的长为2,则a的值为_____

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,OABC是边长为1的正方形,OCx轴正半轴的夹角为15°,点B在抛物线y=ax2(a<0)的图象上,则a的值为(  )

A. B. C. ﹣2 D.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,一艘轮船在A处测得灯塔P位于其东北方向上,轮船沿正东方向航行30海里到达B处后,此时测得灯塔P位于其北偏东30°方向上,此时轮船与灯塔P的距离是(  )海里.

A. 15+15 B. 30+30 C. 45+15 D. 60

查看答案和解析>>

科目: 来源: 题型:

【题目】如图是置于水平地面上的一个球形储油罐,小敏想测量它的半径、在阳光下,他测得球的影子的最远点A到球罐与地面接触点B的距离是10(如示意图,AB10);同一时刻,他又测得竖直立在地面上长为1米的竹竿的影子长为2米,那么,球的半径是________米.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,直线y=x+3与抛物线交于AB两点,点Ax轴上,点B的横坐标为.动点P在抛物线上运动(不与点AB重合),过点Py轴的平行线,交直线AB于点Q.当PQ不与y轴重合时,以PQ为边作正方形PQMN,使MNy轴在PQ的同侧,连结PM.设点P的横坐标为m

1)求bc的值.

2)当点N落在直线AB上时,直接写出m的取值范围.

3)当点PAB两点之间的抛物线上运动时,设正方形PQMN的周长为C,求Cm之间的函数关系式,并写出Cm增大而增大时m的取值范围.

4)当PQM与坐标轴有2个公共点时,直接写出m的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,ABx轴,∠ABC=135°,且AB=4.

(1)填空:抛物线的顶点坐标为 (用含m的代数式表示);

(2)求ABC的面积(用含a的代数式表示);

(3)若ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.

查看答案和解析>>

同步练习册答案