科目: 来源: 题型:
【题目】一个不透明的口袋中有1个白球3个红球,每个小球除颜色外其他都相同.
(1)搅匀后,甲先从袋中随机取出1个小球,记下颜色后不放回;乙再从袋中随机取出1个小球.用画树状图或列表的方法,求甲乙两人取出的都是红球的概率;
(2)搅匀后从中任意取出一个球,要使取出红球的概率为,应添加几个什么颜色的球?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1,AD、BD分别是△ABC的内角∠BAC、∠ABC的平分线,过点A作AE上AD,交BD的延长线于点E.
(1)求证:∠E=∠C;
(2)如图2,如果AE=AB,且BD:DE=2:3,求cos∠ABC的值;
(3)如果∠ABC是锐角,且△ABC与△ADE相似,求∠ABC的度数,并直接写出的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系xOy中(如图),已知抛物线y=x2-2x,其顶点为A.
(1)写出这条抛物线的开口方向、顶点A的坐标,并说明它的变化情况;
(2)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“不动点”
①试求抛物线y=x2-2x的“不动点”的坐标;
②平移抛物线y=x2-2x,使所得新抛物线的顶点B是该抛物线的“不动点”,其对称轴与x轴交于点C,且四边形OABC是梯形,求新抛物线的表达式.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知:如图,AB、AC是⊙O的两条弦,且AB=AC,D是AO延长线上一点,联结BD并延长交⊙O于点E,联结CD并延长交⊙O于点F.
(1)求证:BD=CD:
(2)如果AB2=AO·AD,求证:四边形ABDC是菱形.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1是某小型汽车的侧面示意图,其中矩形ABCD表示该车的后备箱,在打开后备箱的过程中,箱盖ADE可以绕点A逆时针方向旋转,当旋转角为60°时,箱盖ADE落在AD'E'的位置(如图2所示).已知AD=90厘米,DE=30厘米,EC=40厘米.
(1)求点D'到BC的距离;
(2)求E、E'两点的距离.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系xoy中(如图),已知一次函数的图像平行于直线,且经过点A(2,3),与x轴交于点B。
(1)求这个一次函数的解析式;
(2)设点C在y轴上,当AC=BC时,求点C的坐标。
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在菱形ABCD中,点P是BC边上一动点,连结AP,AP的垂直平分线交BD于点G,交 AP于点E,在P点由B点到C点的运动过程中,∠APG的大小变化情况是( )
A. 变大 B. 先变大后变小 C. 先变小后变大 D. 不变
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,直线l: 与x轴.y轴交于B,A两点,点D,C分别为线段AB,OB的中点,连结CD,如图,将△DCB绕点B按顺时针方向旋转角,如图.
(1)连结OC,AD,求证∽;
(2)当0°<<180°时,若△DCB旋转至A,C,D三点共线时,求线段OD的长;
(3)试探索:180°<<360°时,是否还有可能存在A,C,D三点共线的情况,若存在,求出此直线的表达式;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,抛物线y=-x2+bx+c与直线AB交于A(-4,-4),B(0,4)两点,直线AC:y=-x-6交y轴与点C.点E是直线AB上的动点,过点E作EF⊥x轴交AC于点F,交抛物线于点G.
(1)求抛物线y=-x2+bx+c的表达式;
(2)连接GB、EO,当四边形GEOB是平行四边形时,求点G的坐标;
(3)①在y轴上存在一点H,连接EH、HF,当点E运动到什么位置时,以A、E、F、H为顶点的四边形是矩形?求出此时点E、H的坐标;
②在①的前提下,以点E为圆心,EH长为半径作圆,点M为⊙E上一动点,求AM+CM的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com