科目: 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AC=2,E为斜边AB的中点,点P是射线BC上的一个动点,连接AP、PE,将△AEP沿着边PE折叠,折叠后得到△EPA′,当折叠后△EPA′与△BEP的重叠部分的面积恰好为△ABP面积的四分之一,则此时BP的长为_____.
查看答案和解析>>
科目: 来源: 题型:
【题目】将矩形OABC如图放置,O为原点,若点A的坐标是(﹣1,2),点B的坐标是(2,),则点C的坐标是( )
A. (4,2)B. (2,4)C. (,3)D. (3,)
查看答案和解析>>
科目: 来源: 题型:
【题目】问题背景:如图1:在四边形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究线段AC、BC、CD之间的数量关系,小吴同学探究此问题的思路是:将△BCD绕点D,逆时针旋转90°到△AED处,点B、C分别落在点A、E处(如图2),易证点C、A、E在同一条直线上,并且△CDE是等腰直角三角形,所以CE=
CD,从而得出结论:AC+BC=CD.
(1)简单应用:在图1中,若AC=,BC=2,则CD= .
(2)拓展规律,如图3,∠ACB=∠ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD的长(用含m,n的代数式表示)
(3)如图4,∠ACB=90°,AC=BC,点P为AB的中点,若点E满足AE=AC,CE=CA,点Q为AE的中点,直接写出线段PQ与AC的数量关系是 .
查看答案和解析>>
科目: 来源: 题型:
【题目】(10分)水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,张阿姨决定降价销售.
(1)若将这种水果每斤的售价降低x元,则每天的销售量是 斤(用含x的代数式表示);
(2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?
查看答案和解析>>
科目: 来源: 题型:
【题目】实践操作
如图,是直角三角形,,利用直尺和圆规按下列要求作图,并在图中表明相应的字母.(保留作图痕迹,不写作法)
(1)①作的平分线,交于点;②以为圆心,为半径作圆.
综合运用
在你所作的图中,
(2)与⊙的位置关系是 ;(直接写出答案)
(3)若,,求⊙的半径.
(4)在(3)的条件下,求以为轴把△ABC旋转一周得到的圆锥的侧面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,△ABC内接与⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于AC点E,交PC于点F,连接AF.
(1)判断AF与⊙O的位置关系并说明理由;
(2)若⊙O的半径为4,AF=3,求AC的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com