科目: 来源: 题型:
【题目】超市有,两种型号的瓶子,其容量和价格如表,小张买瓶子用来分装15升油(瓶子都装满,且无剩油);当日促销活动:购买型瓶3个或以上,一次性返还现金5元,设购买型瓶(个),所需总费用为(元),则下列说法不一定成立的是( )
型号 | A | B |
单个盒子容量(升) | 2 | 3 |
单价(元) | 5 | 6 |
A.购买型瓶的个数是为正整数时的值B.购买型瓶最多为6个
C.与之间的函数关系式为D.小张买瓶子的最少费用是28元
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1,在平面直角坐标系中,抛物线y=ax2﹣2x﹣3a与x轴交于A、B两点,与y轴交于C点,OC=OB,点P为抛物线上一动点
(1)求抛物线的解析式;
(2)当点P运动到抛物线对称轴右侧时如图2,连PC、BC、BP得△BCP.设△BCP的面积为s,点P的横坐标为x.若s<,求x的取值范围;
(3)当点P运动到第四象限时,连AP、BP,BP交y轴于点R,过B作直线l∥AP交y轴于点Q,问:QR、OC之间是否存在确定的数量关系?若存在,请求出并证明;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】在Rt△ABC中,∠ACB=90°,AC=BC,D为AB边的中点,连接CD,点P为BC边上一点,把△PBD沿PD翻折,点B落在点E处,设PE交AC于F.
(1)如图1,求证:△PCF的周长=CD.
(2)若点P为BC边的延长线上一点,(1)中结论是否仍然成立,若成立,请证明;若不成立,线段PC、CF、PF、CD之间是否存在其它的数量关系,画出图形并证明.
(3)如图2,设DE交AC于G.若∠FPC=30°,CD=3,直接写出FG的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】小明同学在一次社会实践活动中,通过对某种蔬菜在1月份至7月份的市场行情进行统计分析后得出如下规律:
①该蔬菜的销售价(单位:元/千克)与时间(单位:月份)满足关系: ;
②该蔬菜的平均成本(单位:元/千克)与时间(单位:月份)满足二次函数关系.已知4月份的平均成本为2元/千克,6月份的平均成本为1元/千克.
(1)求该二次函数的解析式;
(2)请运用小明统计的结论,求出该蔬菜在第几月份的平均利润(单位:元/千克)最大?最大平均利润是多少?(注:平均利润销售价平均成本)
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示,在△ABC中,∠C=90°,AC=5cm,BC=7cm,点P从点A出发沿边AC向点C以1cm/s的速度移动,点Q从C点出发沿CB边向点B以2cm/s的速度移动.
(1)如果P、Q同时出发,几秒钟后,可使△PCQ的面积为4cm2?
(2)点P、Q在移动过程中,是否存在某一时刻,使得△PCQ的面积等于△ABC的面积的一半?若存在,求出运动的时间;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知关于x的方程x2+(2k-1)x+k2-1=0有两个实数根x1,x2.
(1)求实数k的取值范围;
(2)若x1,x2满足x12+x22=16+x1x2,求实数k的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c的图象经过点(0,﹣2),与x轴交点的横坐标分别为x1、x2,且﹣1<x1<0,1<x2<2,下列结论正确的是( )
A.a<0B.5a+b+2c>0C.2a+b<0D.4ac+8a>b2
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3).
(1)求这个二次函数的表达式;
(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与BC交于点M,连接PC.
①求线段PM的最大值;
②当△PCM是以PM为一腰的等腰三角形时,求点P的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】如果关于的一元二次方程()有两个不相等的实数根,且其中一个根为另一个根的2倍,那么称这样的方程为“倍根方程”,例如,方程的两个根是2和4,则方程就是“倍根方程”.
(1)若一元二次方程是“倍根方程”,则______;
(2)若()是“倍根方程”,求代数式的值;
(3)若方程()是倍根方程,且相异两点,,都在抛物线上,求一元二次方程()的根.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com