精英家教网 > 高中数学 > 题目详情
8、如图,正方体ABCD-A1B1C1D1中,E,F分别为棱DD1,AB上的点.已知下列判断:①A1C⊥平面B1EF;②△B1EF在侧面BCC1B1上  的正投影是面积为定值的三角形;③在平面A1B1C1D1内总存在与平面B1EF平行的直线;④平 面B1EF与平面ABCD所成的二面角(锐角)的大小与点E的位置有关,与点F的位置无关,其中正确判断的个数有(  )
分析:由正方体的结构特征,对所给的几个命题用线面,面面之间的位置关系直接判断正误即可
解答:解:如图
对于①A1C⊥平面B1EF,不一定成立,因为A1C⊥平面AC1D,而两个平面面B1EF与面AC1D不一定平行.
对于②△B1EF在侧面BCC1B1上  的正投影是面积为定值的三角形,此是一个正确的结论,因为其投影三角形的一边是棱BB1,而E点在面上的投影到此棱BB1的距离是定值,故正确;
对于③在平面A1B1C1D1内总存在与平面B1EF平行的直线,此两平面相交,一个面内平行于两个平面的交线一定平行于另一个平面,此结论正确;
对于④平 面B1EF与平面ABCD所成的二面角(锐角)的大小与点E的位置有关,与点F的位置无关,此结论不对,与两者都有关系,可代入几个特殊点进行验证,如F与A重合,E与D重合时的二面角与F与B重合,E与D重合时的情况就不一样.故此命题不正确
综上,②③是正确的
故选B
点评:本题考点是棱柱的结构特征,考查对正方体的几何特征的了解,以及线面垂直,线面平行等位置关系的判定,二面角的求法等知识,涉及到的知识点较多,综合性强.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1的棱长为a,它的各个顶点都在球O的球面上,问球O的表面积.
(1) 如果球O和这个正方体的六个面都相切,则有S=
 

(2)如果球O和这个正方体的各条棱都相切,则有S=
 

精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1中,E,F分别为BB1和A1D1的中点.证明:向量
A1B
B1C
EF
是共面向量.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1棱长为8,E、F分别为AD1,CD1中点,G、H分别为棱DA,DC上动点,且EH⊥FG.
(1)求GH长的取值范围;
(2)当GH取得最小值时,求证:EH与FG共面;并求出此时EH与FG的交点P到直线B1B的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1中,若E、F、G分别为棱BC、C1C、B1C1的中点,O1、O2分别为四边形ADD1A1、A1B1C1D1的中心,则下列各组中的四个点不在同一个平面上的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,正方体ABCD-A1B1C1D1中,E、F、G、H分别是所在棱的三等分点,且BF=DE=C1G=C1H=
13
AB

(1)证明:直线EH与FG共面;
(2)若正方体的棱长为3,求几何体GHC1-EFC的体积.

查看答案和解析>>

同步练习册答案