精英家教网 > 高中数学 > 题目详情
12.某几何体的三视图如图所示(单位:cm),则该几何体的侧面PAB的面积是(  )
A.$\sqrt{3}$B.2C.$\sqrt{5}$D.$\sqrt{7}$

分析 由三视图可知:该几何体是一个三棱锥,底面是一个正三角形,后面的侧棱与底面垂直.

解答 解:由三视图可知:该几何体是一个三棱锥,底面是一个正三角形,后面的侧棱与底面垂直.
∴该几何体的侧面PAB的面积=$\frac{1}{2}×2×\sqrt{{2}^{2}+(\sqrt{3})^{2}}$=$\sqrt{7}$.
故选:D.

点评 本题考查了三视图的有关计算、三棱锥的侧面积的计算公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\frac{1}{2}$x2-3x+(a-1)lnx,g(x)=ax,h(x)=f(x)-g(x)+3x.
(1)当a=5时,求函数f(x)的导函数f′(x)的最小值;
(2)当a=3时,求函数h(x)的单调区间及极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在四棱锥P-ABCD中,底面ABCD是直角梯形,AD⊥AB,AB∥DC,PA⊥底面ABCD,点E为棱PC的中点.AD=DC=AP=2AB=2.
(1)证明:BE⊥平面PDC;
(2)若F为棱PC上一点,满足BF⊥AC,求二面角F-AD-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,已知三棱柱A1B1C1-ABC中,侧棱与底面垂直,AB=BC=AA1,∠ABC=90°,M是BC的中点.
(1)求证:A1B∥平面AMC1
(2)求平面A1B1M与平面AMC1所成角的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.一艘船在航行过程中发现前方的河道上有一座圆拱桥.在正常水位时,拱桥最高点距水面8m,拱桥内水面宽32m,船只在水面以上部分高6.5m,船顶部宽8m,故通行无阻,如图所示.
(1)建立适当的平面直角坐标系,求正常水位时圆弧所在的圆的方程;
(2)近日水位暴涨了2m,船已经不能通过桥洞了.船员必须加重船载,降低船身在水面以上的高度,试问:船身至少降低多少米才能通过桥洞?(精确到0.1m,$\sqrt{6}≈2.45$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,在正方体ABCD-A1B1C1D1中,E,F分别是棱AB、BC的中点,则平面A1DE与平面C1DF所成二面角的余弦值为(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{1}{2}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD为直角梯形,AD∥BC,∠BAD=90°,PA=AD=AB=2BC=2,过AD的平面分别交PB,PC于M,N两点.
(Ⅰ)求证:MN∥BC;
(Ⅱ)若M,N分别为PB,PC的中点,
①求证:PB⊥DN;
②求二面角P-DN-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.边长为2的正方形ABCD所在的平面与△CDE所在的平面交于CD,且AE⊥平面CDE,AE=1.
(Ⅰ)求证:平面ABCD⊥平面ADE;
(Ⅱ)设点F是棱BC上一点,若二面角A-DE-F的余弦值为$\frac{{\sqrt{10}}}{10}$,试确定点F在BC上的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某小学为迎接校运动会的到来,在三年级招募了16名男志愿者和14名女志愿者.调查发现,男、女志愿者中分别各有10人和6人喜欢运动,其他人员不喜欢运动.
(Ⅰ)根据以上数据完成以下2×2列联表:
喜欢运动不喜欢运动总计
a=b=
c=d=
总计n=
(Ⅱ)判断性别与喜欢运动是否有关,并说明理由.
(Ⅲ)如果喜欢运动的女志愿者中恰有4人懂得医疗救护,现从喜欢运动的女志愿者中抽取2名负责医疗救护工作,求抽出的2名志愿者都懂得医疗救护的概率.
附:${Χ^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}({n=a+b+c+d})$
临界值表(部分):
P(χ2≥x00.0500.0250.0100.001
x03.8415.0246.63510.828

查看答案和解析>>

同步练习册答案