精英家教网 > 高中数学 > 题目详情
1.边长为2的正方形ABCD所在的平面与△CDE所在的平面交于CD,且AE⊥平面CDE,AE=1.
(Ⅰ)求证:平面ABCD⊥平面ADE;
(Ⅱ)设点F是棱BC上一点,若二面角A-DE-F的余弦值为$\frac{{\sqrt{10}}}{10}$,试确定点F在BC上的位置.

分析 (Ⅰ)推导出AE⊥CD,AD⊥CD,得CD⊥面ADE,由此能证明平面ABCD⊥平面ADE.
(Ⅱ)以D为原点,DE为x轴,DC为y轴,过D作平面CDE的垂线为z轴,建立空间直角坐标系D-xyz,利用向量法能求出当点F满足$\overrightarrow{CF}=\frac{2}{3}\overrightarrow{CB}$时,二面角A-DE-F的余弦值为$\frac{{\sqrt{10}}}{10}$.

解答 证明:(Ⅰ)∵AE⊥平面CDE,∴AE⊥CD,…(2 分)
又∵AD⊥CD,AE∩AD=A,
∴CD⊥面ADE,…(4分)
又CD?面ABCD,
∴平面ABCD⊥平面ADE.…(6分)
(Ⅱ)∵CD⊥DE,
∴如图,以D为原点,DE为x轴,DC为y轴,过D作平面CDE的垂线为z轴,
建立空间直角坐标系D-xyz,
则:$D(0,\;0,\;0),\;C(0,\;2,\;0),\;E(\sqrt{3},\;0,\;0)$,
∴$\overrightarrow{AB}=\overrightarrow{DC}=(0,\;2,\;0)$,∴$B(\sqrt{3},\;2,\;1)$,…(8分)
设$\overrightarrow{CF}=λ\overrightarrow{CB}=λ(\sqrt{3},\;0,\;1)$,λ∈[0,1]
则$F(\sqrt{3}λ,\;2,\;λ)$…(10分)
设平面FDE的法向量为$\overrightarrow n=(x,\;y,\;z)$,
则$\left\{\begin{array}{l}\overrightarrow n•\overrightarrow{DF}=\sqrt{3}λx+2y+λz=0\\ \overrightarrow n•\overrightarrow{DE}=\sqrt{3}x=0\end{array}\right.$,取z=-2,得$\overrightarrow n=(0,\;λ,\;-2)$,…(12分)
又平面ADE的法向量为$\overrightarrow m=(0,\;1,\;0)$,
∴$cos<\overrightarrow m,\overrightarrow n>=\frac{\overrightarrow m•\overrightarrow n}{{|{\overrightarrow m}||{\overrightarrow n}|}}=\frac{λ}{{\sqrt{{λ^2}+4}}}=\frac{{\sqrt{10}}}{10}$,∴$λ=\frac{2}{3}$,…(14分)
故当点F满足$\overrightarrow{CF}=\frac{2}{3}\overrightarrow{CB}$时,二面角A-DE-F的余弦值为$\frac{{\sqrt{10}}}{10}$…(15分)

点评 本题考查面面垂直的证明,考查满足条件的点是否存在的判断与求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.如图1,已知⊙O的直径AB=4,点C、D为⊙O上两点,且∠CAB=45°,∠DAB=60°,F为弧BC的中点、将⊙O沿直径AB折起成两个半平面(如图2).
(1)求证:OF∥平面ACD;
(2)(文) 当折起的两个半平面垂直时,在AD上是否存在点E,使得平面OCE⊥平面ACD?若存在,试指出点E的位置;若不存在,请说明理由.
(3)(理) 当三棱锥C-ADO体积最大时,求二面角C-AD-B的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某几何体的三视图如图所示(单位:cm),则该几何体的侧面PAB的面积是(  )
A.$\sqrt{3}$B.2C.$\sqrt{5}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知P是圆C:x2+y2=4上的动点,P在x轴上的射影为P′,点M满足$\overrightarrow{PM}$=$\overrightarrow{MP}$,当P在圆C上运动时,点M形成的轨迹为曲线E
(Ⅰ)求曲线E的方程;
(Ⅱ)经过点A(0,2)的直线l与曲线E相交于点C,D,并且$\overrightarrow{AC}$=$\frac{3}{5}$$\overrightarrow{AD}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在平面直角坐标系xOy中,E,F两点的坐标分别为(0,1),(0,-1),动点G满足:直线EG与直线FG的斜率之积为-$\frac{1}{2}$.
(1)求动点G的轨迹方程;
(2)⊙O是以EF为直径的圆,一直线l:y=kx+m与⊙O相切,并与动点G的轨迹交于不同的两点A,B.当$\overrightarrow{OA}$•$\overrightarrow{OB}$=$\frac{2}{3}$时,求△AOB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.半径为R的球O中有两个半径分别为2$\sqrt{3}$与2$\sqrt{2}$的截面圆,它们所在的平面互相垂直,且两圆的公共弦长为R,则R=(  )
A.4$\sqrt{3}$B.5C.3$\sqrt{3}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在四棱柱P-ABCD中,底面ABCD为矩形,△PCD为等边三角形,$BC=\sqrt{2}AB$,点M为BC中点,平面PCD⊥平面ABCD.
(1)求证:PD⊥BC;
(2)求二面角P-AM-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数$f(x)=alnx+\frac{{2{a^2}}}{x}+x(a∈R)$.
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)若对任意m,n∈(0,e)且m≠n,有$\frac{f(m)-f(n)}{m-n}<1$恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知2x+3y+4z=10,求x2+y2+z2的最小值.

查看答案和解析>>

同步练习册答案