精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)=$\frac{1}{2}$x2-3x+(a-1)lnx,g(x)=ax,h(x)=f(x)-g(x)+3x.
(1)当a=5时,求函数f(x)的导函数f′(x)的最小值;
(2)当a=3时,求函数h(x)的单调区间及极值.

分析 (1)求出函数的导数,根据基本不等式的性质求出函数的最小值即可;(2)求出h(x)的导数,得到h(x)的单调区间,求出函数的极值即可.

解答 解:(1)f′(x)=x+$\frac{a-1}{x}$-3,其中x>0.
因为a=5,又x>0,所以$x+\frac{4}{x}-3≥4-3=1$,
当且仅当x=2时取等号,其最小值为1;…(4分)
(2)当a=3时,h(x)=$\frac{1}{2}$x2+2lnx-3x,
h′(x)=x+$\frac{2}{x}$-3=$\frac{(x-1)(x-2)}{x}$,…(6分)
x,h′(x),h(x)的变化如下表:

x(0,1)1(1,2)2(2,+∞)
h′(x)+0-0+
h(x)递增-$\frac{5}{2}$递减2ln2-4递增
函数h(x)在x=1处取得极大值-$\frac{5}{2}$,在x=2处取得极小值2ln2-4.…(12分)

点评 本题考查了函数的单调性、最值、最值问题,考查导数的应用,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.在数列{an}中,a1=1,an+1=$\frac{{2{a_n}}}{{2+{a_n}}}$(n∈N*).
(Ⅰ)计算a2、a3、a4
(Ⅱ)试猜想这个数列的通项公式,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.甲乙丙三人在进行一项投掷骰子游戏中规定:若掷出1点,甲得1分,若掷出2点或3点,乙得1分;若掷出4点或5点或6点,丙得1分,前后共掷3次,设x,y,z分别表示甲、乙、丙三人的得分.
(1)求x=0,y=1,z=2的概率;
(2)记ξ=x+z,求随机变量ξ的概率分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,内角A、B、C所对的边分别为a、b、c,且BC边上的高为$\frac{a}{2}$,则当$\frac{b}{c}$+$\frac{c}{b}$取得最大值时,内角A=(  )
A.$\frac{2π}{3}$B.$\frac{π}{2}$C.$\frac{π}{3}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知随机变量X服从正态分布N(2,σ2),其正态分布密度曲线为函数f(x)的图象,且${∫}_{0}^{2}$f(x)dx=$\frac{1}{3}$,则P(x>4)=(  )
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在△ABC中,若a,b,c分别是角A,B,C所对的边,a2+b2-c2+ab=0,则角C=$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设l,m,n是空间三条不同的直线,α,β是空间两个不重合的平面,给出下列四个命题:
①若l与m异面,m∥n,则l与n异面; 
②若l∥α,α∥β,则l∥β;
③若α⊥β,l⊥α,m⊥β,则l⊥m; 
④若m∥α,m∥n,则n∥α.
其中正确命题的序号有③.(请将你认为正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图1,已知⊙O的直径AB=4,点C、D为⊙O上两点,且∠CAB=45°,∠DAB=60°,F为弧BC的中点、将⊙O沿直径AB折起成两个半平面(如图2).
(1)求证:OF∥平面ACD;
(2)(文) 当折起的两个半平面垂直时,在AD上是否存在点E,使得平面OCE⊥平面ACD?若存在,试指出点E的位置;若不存在,请说明理由.
(3)(理) 当三棱锥C-ADO体积最大时,求二面角C-AD-B的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某几何体的三视图如图所示(单位:cm),则该几何体的侧面PAB的面积是(  )
A.$\sqrt{3}$B.2C.$\sqrt{5}$D.$\sqrt{7}$

查看答案和解析>>

同步练习册答案