分析 (1)求出函数的导数,根据基本不等式的性质求出函数的最小值即可;(2)求出h(x)的导数,得到h(x)的单调区间,求出函数的极值即可.
解答 解:(1)f′(x)=x+$\frac{a-1}{x}$-3,其中x>0.
因为a=5,又x>0,所以$x+\frac{4}{x}-3≥4-3=1$,
当且仅当x=2时取等号,其最小值为1;…(4分)
(2)当a=3时,h(x)=$\frac{1}{2}$x2+2lnx-3x,
h′(x)=x+$\frac{2}{x}$-3=$\frac{(x-1)(x-2)}{x}$,…(6分)
x,h′(x),h(x)的变化如下表:
| x | (0,1) | 1 | (1,2) | 2 | (2,+∞) |
| h′(x) | + | 0 | - | 0 | + |
| h(x) | 递增 | -$\frac{5}{2}$ | 递减 | 2ln2-4 | 递增 |
点评 本题考查了函数的单调性、最值、最值问题,考查导数的应用,是一道中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2π}{3}$ | B. | $\frac{π}{2}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{6}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | 2 | C. | $\sqrt{5}$ | D. | $\sqrt{7}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com