精英家教网 > 高中数学 > 题目详情
14.在△ABC中,若a,b,c分别是角A,B,C所对的边,a2+b2-c2+ab=0,则角C=$\frac{2π}{3}$.

分析 利用余弦定理求得cosC的值,可得C的值.

解答 解:△ABC中,若a,b,c分别是角A,B,C所对的边,a2+b2-c2+ab=0,则cosC=$\frac{{a}^{2}{+b}^{2}{-c}^{2}}{2ab}$=-$\frac{1}{2}$,
∴C=$\frac{2π}{3}$,
故答案为:$\frac{2π}{3}$.

点评 本题主要考查余弦定理的应用,根据三角函数的值求角,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.给出下面三个类比推理:
①实数m、n,有(m+n)2=m2+2mn+n2;类比向量有($\overrightarrow a$+$\overrightarrow b$)2=${\overrightarrow a$2+2$\overrightarrow a$•$\overrightarrow{b}$+${\overrightarrow b$2
②实数m、n,若m2+n2=0,则m=n=0;类比复数z1、z2,若z12+z22=0,则z1=z2=0
③向量$\overrightarrow a$,有|$\overrightarrow a$|2=${\overrightarrow a$2;类比复数z,有|z|2=z2
类比所得到的命题中,真命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.当x<0时,f(x)=-x-$\frac{2}{x}$的最小值是2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.函数f(x)=$\frac{a}{x}$+lnx,其中a为实常数.
(1)讨论f(x)的单调性;
(2)不等式f(x)≥1在x∈(0,1]上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\frac{1}{2}$x2-3x+(a-1)lnx,g(x)=ax,h(x)=f(x)-g(x)+3x.
(1)当a=5时,求函数f(x)的导函数f′(x)的最小值;
(2)当a=3时,求函数h(x)的单调区间及极值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知圆锥的底面半径为1,高为$2\sqrt{2}$,则该圆锥的侧面积为3π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.要证明不等式$\sqrt{3}$+$\sqrt{7}$<2$\sqrt{5}$,可选择的方法有(  )
A.分析法B.综合法
C.反证法D.以上三种方法均可

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知直线l:4x+3y+10=0,半径为2的圆C与l相切,圆心C在x轴上且在直线l的右上方
(1)求圆C的方程;
(2)过点M(1,0)的直线与圆C交于A,B两点(A在x轴上方),问在x轴正半轴上是否存在定点N,使得x轴平分∠ANB?若存在,请求出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,在正方体ABCD-A1B1C1D1中,E,F分别是棱AB、BC的中点,则平面A1DE与平面C1DF所成二面角的余弦值为(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{1}{2}$D.$\frac{1}{5}$

查看答案和解析>>

同步练习册答案