精英家教网 > 高中数学 > 题目详情
1.设l,m,n是空间三条不同的直线,α,β是空间两个不重合的平面,给出下列四个命题:
①若l与m异面,m∥n,则l与n异面; 
②若l∥α,α∥β,则l∥β;
③若α⊥β,l⊥α,m⊥β,则l⊥m; 
④若m∥α,m∥n,则n∥α.
其中正确命题的序号有③.(请将你认为正确命题的序号都填上)

分析 利用空间中直线与平面、平面与平面之间的位置关系,对4个选项分别进行判断,即可得出结论.

解答 解:①若l与m异面,m∥n,则l与n异面或相交,故不正确; 
②若l∥α,α∥β,则l∥β或l?β,故不正确;
③若α⊥β,l⊥α,m⊥β,利用正方体模型,可得l⊥m,正确; 
④若m∥α,m∥n,则n∥α或n?α,故不正确.
故答案为:③.

点评 本题考查空间中直线与平面之间的位置关系,主要考查了线面与面面平行、垂直的判断定理.需要答题者有一定的空间想像能力及根据条件做出正确联想的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.如图,椭圆$\frac{x^2}{a^2$+$\frac{y^2}{b^2}$=1(a>b>0)与x轴、y轴的正半轴相交于A、B,过椭圆上一点P作x轴的垂线,垂足恰为左焦点F1,OP∥AB.
(Ⅰ)求椭圆的离心率;
(Ⅱ)线段PB的垂直平分线与y轴相交于C,若$\overrightarrow{OC}$=λ$\overrightarrow{OB}$,求λ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=lnx-kx+2,k∈R.
(1)若k=1,求函数f(x)的单调区间;
(2)若f(x)<2在R+上恒成立,求k的取值范围;
(3)若x1>0,x2>0,x1+x2<ex1x2,求证x1+x2>1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\frac{1}{2}$x2-3x+(a-1)lnx,g(x)=ax,h(x)=f(x)-g(x)+3x.
(1)当a=5时,求函数f(x)的导函数f′(x)的最小值;
(2)当a=3时,求函数h(x)的单调区间及极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知等比数列{an}的前n项和为Sn,且公比q>1,若a2=2,S3=7.
(1)求通项公式an及Sn
(2)求a12+a22+…+an2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.要证明不等式$\sqrt{3}$+$\sqrt{7}$<2$\sqrt{5}$,可选择的方法有(  )
A.分析法B.综合法
C.反证法D.以上三种方法均可

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图所示,△ABC是圆O的内接三角形,AC=BC,D为弧AB上任一点,延长DA至点E,使CE=CD.
(1)求证:BD=AE;
(2)若AC⊥BC,求证:AD+BD=$\sqrt{2}$CD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在四棱锥P-ABCD中,底面ABCD是直角梯形,AD⊥AB,AB∥DC,PA⊥底面ABCD,点E为棱PC的中点.AD=DC=AP=2AB=2.
(1)证明:BE⊥平面PDC;
(2)若F为棱PC上一点,满足BF⊥AC,求二面角F-AD-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD为直角梯形,AD∥BC,∠BAD=90°,PA=AD=AB=2BC=2,过AD的平面分别交PB,PC于M,N两点.
(Ⅰ)求证:MN∥BC;
(Ⅱ)若M,N分别为PB,PC的中点,
①求证:PB⊥DN;
②求二面角P-DN-A的余弦值.

查看答案和解析>>

同步练习册答案