【题目】已知函数.
(1)若在上恒成立,求实数的取值范围;
(2)若函数,求函数的值域.
【答案】(1);(2)见解析.
【解析】
(1)由参变量分离法得出在上恒成立,构造函数,考查该函数在的单调性,利用单调性得出,于此可得出实数的取值范围;
(2)先得出,换元,将问题转化为求函数在上的值域问题求解,然后分、、三种情况讨论,可得出函数在上的值域,即为函数的值域.
(1)当时,,由得,即,
构造函数,其中,则,
所以,函数在区间上为增函数,则,
由于不等式在上恒成立,所以,,因此,实数的取值范围是;
(2)由题意可得,令,则,其中.
①当时,,该函数的值域为;
②当时,由于二次函数的图象开口向下,对称轴为直线,
此时,函数在上单调递减,所以,,
此时,该函数的值域为;
③当时,由于二次函数的图象开口向上,对称轴为直线,
此时,该函数在上单调递减,在上单调递增,
则,此时,该函数的值域为.
综上所述:当时,函数的值域为;
当时,函数的值域为.
科目:高中数学 来源: 题型:
【题目】如图,已知点是椭圆上的任意一点,直线与椭圆交于,两点,直线,的斜率都存在.
(1)若直线过原点,求证:为定值;
(2)若直线不过原点,且,试探究是否为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一种室内植物的株高(单位:)与与一定范围内的温度(单位:)有,现收集了该种植物的组观测数据,得到如图所示的散点图:
现根据散点图利用或建立关于的回归方程,令,,得到如下数据:
且与的相关系数分别为、,其中.
(1)用相关系数说明哪种模型建立关于的回归方程更合适;
(2)(i)根据(1)的结果及表中数据,求关于的回归方程;
(ii)已知这种植物的利润(单位:千元)与、的关系为,当何值时,利润的预报值最大.
附:对于样本,其回归直线的斜率和截距的最小二乘估计公式分别为:,,
相关系数,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某单位有车牌尾号为的汽车和尾号为的汽车,两车分属于两个独立业务部分.对一段时间内两辆汽车的用车记录进行统计,在非限行日, 车日出车频率, 车日出车频率.该地区汽车限行规定如下:
车尾号 | 和 | 和 | 和 | 和 | 和 |
限行日 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 |
现将汽车日出车频率理解为日出车概率,且, 两车出车相互独立.
(I)求该单位在星期一恰好出车一台的概率.
(II)设表示该单位在星期一与星期二两天的出车台数之和,求的分布列及其数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,倾斜角为的直线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为 .
(Ⅰ)求直线的普通方程和曲线的直角坐标方程;
(Ⅱ)已知点,若点的极坐标为,直线经过点且与曲线相交于两点,设线段的中点为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点P是椭圆上的动点,、为椭圆的左、右焦点,O为坐标原点,若M是的角平分线上的一点,且F1M⊥MP,则|OM|的取值范围是( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】高斯函数是数学中的一个重要函数,在自然科学社会科学以及工程学等领域都能看到它的身影.设,用符号表示不大于的最大整数,如,则叫做高斯函数.给定函数,若关于的方程有5个解,则实数的取值范围为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1 ,正方形的边长为分别是和的中点,是正方形的对角线与的交点,是正方形两对角线的交点,现沿将折起到的位置,使得,连结(如图2).
(1)求证:;
(2)求三棱锥的高.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com