精英家教网 > 高中数学 > 题目详情
13.已知$\overrightarrow{OA}$=$\overrightarrow a$,$\overrightarrow{OB}$=$\overrightarrow b$,且|${\overrightarrow a}$|=|${\overrightarrow b}$|=4,∠AOB=60°,求:
①|3$\overrightarrow a$-2$\overrightarrow b}$|; 
②$\overrightarrow a$+$\overrightarrow b$与$\overrightarrow a$的夹角.

分析 ①根据条件,进行数量积的运算可以求出$(3\overrightarrow{a}-2\overrightarrow{b})^{2}$的值,进而便可得出$|3\overrightarrow{a}-2\overrightarrow{b}|$的值;
②进行数量积的运算便可求出$|\overrightarrow{a}+\overrightarrow{b}|$和$(\overrightarrow{a}+\overrightarrow{b})•\overrightarrow{a}$的值,进而根据向量夹角的余弦公式即可求出cos$<\overrightarrow{a}+\overrightarrow{b},\overrightarrow{a}>$的值,从而得出$\overrightarrow{a}+\overrightarrow{b}$与$\overrightarrow{a}$的夹角.

解答 解:①$(3\overrightarrow{a}-2\overrightarrow{b})^{2}=9{\overrightarrow{a}}^{2}-12\overrightarrow{a}•\overrightarrow{b}+4{\overrightarrow{b}}^{2}$
=$9×16-12×16×\frac{1}{2}+4×16$
=16×7;
∴$|3\overrightarrow{a}-2\overrightarrow{b}|=4\sqrt{7}$;
②$(\overrightarrow{a}+\overrightarrow{b})^{2}={\overrightarrow{a}}^{2}+2\overrightarrow{a}•\overrightarrow{b}+{\overrightarrow{b}}^{2}$=16+16+16=16×3;
∴$|\overrightarrow{a}+\overrightarrow{b}|=4\sqrt{3}$;
$(\overrightarrow{a}+\overrightarrow{b})•\overrightarrow{a}={\overrightarrow{a}}^{2}+\overrightarrow{a}•\overrightarrow{b}=16+8=24$;
∴$cos<\overrightarrow{a}+\overrightarrow{b},\overrightarrow{a}>=\frac{(\overrightarrow{a}+\overrightarrow{b})•\overrightarrow{a}}{|\overrightarrow{a}+\overrightarrow{b}||\overrightarrow{a}|}$=$\frac{24}{4\sqrt{3}×4}=\frac{\sqrt{3}}{2}$;
∴$\overrightarrow{a}+\overrightarrow{b}$与$\overrightarrow{a}$的夹角为30°.

点评 考查向量数量积的运算及计算公式,要求$|3\overrightarrow{a}-2\overrightarrow{b}|$,而求$(3\overrightarrow{a}-2\overrightarrow{b})^{2}$的方法,以及向量夹角的余弦公式,已知三角函数值求角.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.如图,平面ABEF⊥平面ABC,四边形ABEF为矩形,AC=BC.O为AB的中点,OF⊥BC.
(1)求证:OE⊥FC;
(2)设AF=1,AC=$\sqrt{3}$,求二面角F-CE-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知f(x)=$\sqrt{x}$
(Ⅰ)计算f(x)的图象在点(4,2)处的切线斜率;
(Ⅱ)求此切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.用数学归纳法证明:1+$\frac{1}{1+2}$+$\frac{1}{1+2+3}$+…$\frac{1}{1+2+3+…n}$=$\frac{2n}{n+1}$ (n∈N*),由“k递推到k+1”时左端需增加的代数式是$\frac{2}{(k+1)(k+2)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若执行如图所示的程序框图,输出S的值为3,则空白菱形处填(  )
A.k<9?B.k<8?C.k<7?D.k<6?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.函数f(x)=Asin(ωx+φ)+1(A>0,ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)在x=$\frac{π}{3}$处取最大值为3,其图象相邻两条对称轴之间的距离为$\frac{π}{2}$,
(1)求函数f(x)的解析式;
(2)设x∈[0,$\frac{π}{2}$],f(x)求的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设向量$\overrightarrow a$,$\overrightarrow b$不平行,向量λ$\overrightarrow a$+$\overrightarrow b$与$\overrightarrow a$+2$\overrightarrow b$平行,则实数λ=(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=2x3-7x2-4x,则不等式f(x)<0的解集是(  )
A.$({-∞,-\frac{1}{2}})∪({0,4})$B.$({-∞,-4})∪({\frac{1}{2},1})$C.$({-\frac{1}{2},0})∪({4,+∞})$D.$({-∞,0})∪({\frac{1}{2},4})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10 000人中再用分层抽样方法抽出80人作进一步调查,则在[3000,3500)(元)月收入段应抽出12人.

查看答案和解析>>

同步练习册答案