精英家教网 > 高中数学 > 题目详情
12.请认真阅读程序框图,然后回答问题,其中n0∈N.
(1)若输入n0=0,写出所输出的结果;
(2)若输出的结果中,只有三个自然数,求输入的自然数n0的所有可能的值.

分析 (1)模拟程序框图的运行过程,即可求出n0=0时输出的数;
(2)分析程序的运行过程,即可得出结论.

解答 解:(1)若输入n0=0,则程序运行后输出的数为
20,10,5,4,2;
(2)模拟程序框图的运行过程,知:
要使结果只有三个数,只能是5,4,2;
所以应使5≤$\frac{20}{{n}_{0}+1}$<10,
解得1<n0≤3,
即n0=3,2;
所以输入的n0可能值为2,3.

点评 本题考查了程序框图的应用问题,解题时应模拟程序的运行过程,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.若实数x,y满足$\left\{{\begin{array}{l}{x-y≥0}\\{x+y-2≤0}\\{y≥-2}\end{array}}\right.$,则z=3x+y的最大值是10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.关于x的方程$\sqrt{1-{x}^{2}}$=kx+2有唯一实数解,则实数k的取值范围是(  )
A.$\left\{{±\sqrt{3}}\right\}$B.(-∞,-2)∪(2,+∞)C.(-2,2)D.$({-∞,-2})∪\left\{{±\sqrt{3}}\right\}∪({2,+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知f(x)=sin(x+θ)+$\sqrt{3}$cos(x+θ)的一条对称轴为y轴,且θ∈(0,π).求θ=$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知双曲线一条渐近线的斜率为$\sqrt{3}$,焦点是(-4,0)、(4,0),则双曲线方程为(  )
A.$\frac{x^2}{12}-\frac{y^2}{4}=1$B.$\frac{x^2}{4}-\frac{y^2}{12}=1$C.$\frac{x^2}{10}-\frac{y^2}{6}=1$D.$\frac{x^2}{6}-\frac{y^2}{10}=1$1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.当|$\overrightarrow a$|=|$\overrightarrow b$|≠0且$\overrightarrow a$、$\overrightarrow b$不共线时,$\overrightarrow a$+$\overrightarrow b$与$\overrightarrow a$-$\overrightarrow b$的关系是(  )
A.平行B.垂直C.相交但不垂直D.相等

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.将石子摆成如图的梯形形状,称数列5,9,14,20,…为梯形数,根据图形的构成,此数列的第20项与5的差即a20-5=(  )
A.252B.263C.258D.247

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知a>0,0<b<1,那么a,ab,ab2的从大到小排列顺序是a>ab>ab2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图是定义在[-5,5]上的函数y=f(x),根据图象回答函数y=f(x)在定义域上的单调增区间是(  )
A.[-2,1),[3,5]B.[-2,1)∪[3,5]C.[-2,1]D.[3,5]

查看答案和解析>>

同步练习册答案