如图,在四棱锥P-ABCD中,PD⊥面ABCD,AD∥BC,CD=13,AB=12,BC=10,AD =12 BC. 点E、F分别是棱PB、边CD的中点.(1)求证:AB⊥面PAD; (2)求证:EF∥面PAD
(1)要证明线面垂直,关键是要通过线线垂直的证明,结合判定定理来得到,关键点 一步是AD⊥AB.
(2)要证明线面平行,关键是要通过线线平行的证明,结合判定定理来得到,通过做适当的辅助线,结合三角形的中位线平移,得到EF∥DQ.
解析试题分析:证明:(1)因为PD⊥面ABCD,
所以PD⊥AB. 2分
在平面ABCD中,D作DM//AB,则由AB=12得
DM=12.又BC=10,AD=BC,则AD=5,从而CM=5.
于是在△CDM中,CD=13,DM=12,CM=5,则
由及勾股定理逆定理得DM⊥BC .
又DM//AB,BC//AD,所以AD⊥AB.
又PD∩AD=D,所以AB⊥面PAD. 6分
(2)[证法一] 取AB的中点N,连结EN、FN.
因为点E是棱PB的中点,所以在△ABP中,EN//PA.
又PAÌ面PAD,所以EN//面PAD. 8分
因为点F分别是边CD的中点,所以在梯形ABCD中,FN//AD.
又ADÌ面PAD,所以FN//面PAD. 10分
又EN∩FN=N,PA∩DA=A,所以面EFN//面PAD. 12分
又EFÌ面EFN,则EF//面PAD. 14分
[证法二] 延长CD,BA交于点G.
连接PG,EG,EG与PA交于点Q.
由题设AD∥BC,且AD= BC,所以CD=DG,BA
=AG,即点A为BG的中点.
又因为点E为棱PB的中点,所以EA为△BPG的中位线,即EA∥PG,且EA:PG=1:2,故有EA:PG=EQ:QG=1:2. 10分
又F是边CD的中点,并由CD=DG,则有FD:DG
=1:2. 12分
在△GFE中,由于EQ:QG=1:2,FD:DG=1:2,所以EF∥DQ.
又EFË面PAD,而DQÌ面PAD,所以EF∥面PAD. 14分
考点:空间中线面位置关系
点评:解决该试题的关键是熟练的结合线面平行和垂直的判定定理,找到线线的平行和垂直关系,属于基础题。
科目:高中数学 来源: 题型:解答题
如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900。
求证:(1)PC⊥BC;
(2)求点A到平面PBC的距离。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥中,底面为直角梯形,且,,侧面底面. 若.
(Ⅰ)求证:平面;
(Ⅱ)侧棱上是否存在点,使得平面?若存在,指出点 的位置并证明,若不存在,请说明理由;
(Ⅲ)求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知四棱锥E-ABCD的底面为菱形,且∠ABC=60°,AB=EC=2,AE=BE=
(1)求证:平面EAB⊥平面ABCD
(2)求二面角A-EC-D的余弦值
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知两个正方形ABCD 和DCEF不在同一平面内,且平面ABCD ⊥平面DCEF,M,N分别为AB,DF的中点。
(1)求直线MN与平面ABCD所成角的正弦值;
(2)求异面直线ME与BN所成角的余弦值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在三棱锥P -ABC中,点P在平面ABC上的射影D是AC的中点.BC ="2AC=8,AB" =
(I )证明:平面PBC丄平面PAC
(II)若PD =,求二面角A-PB-C的平面角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com