精英家教网 > 高中数学 > 题目详情

如图,已知四棱锥E-ABCD的底面为菱形,且∠ABC=60°,AB=EC=2,AE=BE=

(1)求证:平面EAB⊥平面ABCD
(2)求二面角A-EC-D的余弦值

(1)先证EO⊥平面ABCD即可得证  (2)

解析试题分析:(1)证明:取AB的中点O,连接EO,CO
△AEB为等腰直角三角形
∴EO⊥AB,EO=1
又∵AB=BC,∠ABC=60°,∴△ABC是等边三角形,
,又
∵EO⊥平面ABCD,又EO平面EAB,∴平面EAB⊥平面ABCD
(2)以AB的中点O为坐标原点,OB所在直线为y轴,OE所在直线为z轴,如图建系则

(0,2,0)

设平面DCE的法向量为,则,即,解得:

同理求得平面EAC的一个法向量为
,所以二面角A-EC-D的余弦值为
考点:用空间向量求平面间的夹角 平面与平面垂直判定 二面角的平面角及求法
点评:本题给出特殊四棱锥,求证面面垂直并求二面角的余弦值,着重考查了空间线面垂直、
面面垂直的判定与性质和利用空间向量的方法求面面所成角的知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在长方体ABCD—A1B1C1D1中,AD=AA1=1,AB=2,E为AB的中点,F为CC1的中点.

(1)证明:B F//平面E CD1
(2)求二面角D1—EC—D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在长方体中,在棱上.

(1)求异面直线所成的角;
(2)若二面角的大小为,求点到面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知矩形ABCD所在平面外一点P,PA⊥平面ABCD,E、F分别是AB, PC的中点

(1)求证:EF∥平面PAD;
(2)求证:EF⊥CD;    
(3)若ÐPDA=45°,求EF与平面ABCD所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图:在多面体EF-ABCD中,四边形ABCD是平行四边形,△EAD为正三角形,且平面EAD平面ABCD,EF∥AB, AB=2EF=2AD=4,.

(Ⅰ)求证:BFAD;
(Ⅱ)求直线BD与平面BCF所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,PD⊥面ABCD,AD∥BC,CD=13,AB=12,BC=10,AD =12 BC. 点E、F分别是棱PB、边CD的中点.(1)求证:AB⊥面PAD; (2)求证:EF∥面PAD

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直角梯形ABCD中,,且E、F分别为线段CD、AB上的点,且.将梯形沿EF折起,使得平面平面BCEF,折后BD与平面ADEF所成角正切值为

(Ⅰ)求证:平面BDE
(Ⅱ)求平面BCEF与平面ABD所成二面角(锐角)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
如图1,在等腰梯形CDEF中,CB、DA是梯形的高,,现将梯形沿CB、DA折起,使,得一简单组合体如图2示,已知分别为的中点.

图1                                图2
(1)求证:平面
(2)求证:
(3)当多长时,平面与平面所成的锐二面角为

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图1,在Rt中,.D、E分别是上的点,且,将沿折起到的位置,使,如图2.

(Ⅰ)求证:平面平面
(Ⅱ)若,求与平面所成角的余弦值;
(Ⅲ)当点在何处时,的长度最小,并求出最小值.

查看答案和解析>>

同步练习册答案