精英家教网 > 高中数学 > 题目详情

如图,在直角梯形ABCD中,,且E、F分别为线段CD、AB上的点,且.将梯形沿EF折起,使得平面平面BCEF,折后BD与平面ADEF所成角正切值为

(Ⅰ)求证:平面BDE
(Ⅱ)求平面BCEF与平面ABD所成二面角(锐角)的大小.

(1)对于面面垂直的证明,主要是通过线面垂直的判定定理,以及面面垂直的判定定理来得到,属于基础题。
(2) 45°

解析试题分析:证明(Ⅰ)∵,平面平面BCEF,∴平面BCEF

BD与平面ADEF所成角,得
,则,得
FAB中点,可得,又平面BCEF,得,∴平面BDE
(Ⅱ)取中点M,连结MB、MD,易知MBAD,∴平面ABMD即平面ABD.∵平面BCEF,∴MB,∴平面CDE,得,DMBM
MBEC.∴∠DME即平面BCEF与平面ABD所成二面角.
易知∠DME=45°.∴平面BCEF与平面ABD所成二面角为45°.
考点:二面角的平面角,以及面面垂直
点评:考查了空间中垂直的证明,以及二面角的求解的运用,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在棱长为的正方体中,分别为的中点.

(1)求直线与平面所 成 角的大小;
(2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥的底面是正方形,⊥底面,点在棱上.

(1)求证:平面⊥平面
(2)当的中点时,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知四棱锥E-ABCD的底面为菱形,且∠ABC=60°,AB=EC=2,AE=BE=

(1)求证:平面EAB⊥平面ABCD
(2)求二面角A-EC-D的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知在四棱锥中,,,分别是的中点.

(Ⅰ)求证
(Ⅱ)求证
(Ⅲ)若,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥P -ABC中,点P在平面ABC上的射影D是AC的中点.BC ="2AC=8,AB" =

(I )证明:平面PBC丄平面PAC
(II)若PD =,求二面角A-PB-C的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
如图,在四棱锥中,底面的中点.

(Ⅰ)证明
(Ⅱ)证明平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图,在三棱锥中,, 点分别在棱上,且

(Ⅰ)求证:平面PAC
(Ⅱ)当的中点时,求与平面所成的角的正弦值;
(Ⅲ)是否存在点使得二面角为直二面角?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知四棱锥的底面为菱形,且
,的中点.

(Ⅰ)求证:平面
(Ⅱ)求点到面的距离.

查看答案和解析>>

同步练习册答案