精英家教网 > 高中数学 > 题目详情

如图,四棱锥的底面是正方形,⊥底面,点在棱上.

(1)求证:平面⊥平面
(2)当的中点时,求与平面所成角的正弦值.

(Ⅰ)利用线面垂直证明面面垂直;(Ⅱ)

解析试题分析:(Ⅰ)∵四边形ABCD是正方形,∴ACBD
PD⊥底面ABCD,∴PDAC,∴AC⊥平面PDB
,∴平面AEC⊥平面PDB.              (6分)
(Ⅱ)方法一:如图1,设ACBD=O,连接OE

由(Ⅰ)知AC⊥平面PDBO,∴∠AEOAE与平面PDB所成的角,   
∵O,E分别为DB、PB的中点,∴OE∥PD,且OE=PD,
又∵PD⊥底面ABCD, ∴OE⊥底面ABCD,OE⊥AO,      
在Rt△AOE中,由PD=AB,
,则,∴,于是
即AE与平面PDB所成角的正弦值为.               (12分)
方法二:如图2,以D为原点建立空间直角坐标系D?xyz

AE与平面PDB所成的角为

于是,所以
且平面的法向量,所以
AE与平面PDB所成角的正弦值为.               (12分)
考点:本题考查了空间中的线面关系及空间角的求法
点评:直线和平面成角的重点是研究斜线和平面成角,常规求解是采用“作、证、算”,但角不易作出时,可利用构成三条线段的本质特征求解,即分别求斜线段、射影线段、点A到平面的距离求之.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

一个多面体的直观图和三视图如图所示,其中分别是的中点.
(1)求证:平面
(2)在线段上(含端点)确定一点,使得∥平面,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,已知在矩形ABCD中,AB=1,BC=a(a>0),PA⊥平面AC,且PA=1.

(1)试建立适当的坐标系,并写出点P、B、D的坐标;
(2)问当实数a在什么范围时,BC边上能存在点Q,使得PQ⊥QD?
(3)当BC边上有且仅有一个点Q使得PQ⊥QD时,求二面角Q-PD-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在长方体中,在棱上.

(1)求异面直线所成的角;
(2)若二面角的大小为,求点到面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图梯形ABCD,AD∥BC,∠A=900,过点C作CE∥AB,AD=2BC,AB=BC,,现将梯形沿CE
折成直二面角D-EC-AB.
(1)求直线BD与平面ABCE所成角的正切值;
(2)设线段AB的中点为,在直线DE上是否存在一点,使得∥面BCD?若存在,请指出点的位置,并证明你的结论;若不存在,请说明理由;
   

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知矩形ABCD所在平面外一点P,PA⊥平面ABCD,E、F分别是AB, PC的中点

(1)求证:EF∥平面PAD;
(2)求证:EF⊥CD;    
(3)若ÐPDA=45°,求EF与平面ABCD所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图:在多面体EF-ABCD中,四边形ABCD是平行四边形,△EAD为正三角形,且平面EAD平面ABCD,EF∥AB, AB=2EF=2AD=4,.

(Ⅰ)求证:BFAD;
(Ⅱ)求直线BD与平面BCF所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直角梯形ABCD中,,且E、F分别为线段CD、AB上的点,且.将梯形沿EF折起,使得平面平面BCEF,折后BD与平面ADEF所成角正切值为

(Ⅰ)求证:平面BDE
(Ⅱ)求平面BCEF与平面ABD所成二面角(锐角)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
在边长为2的正方体中,EBC的中点,F的中点

(1)求证:CF∥平面
(2)求二面角的平面角的余弦值.

查看答案和解析>>

同步练习册答案