精英家教网 > 高中数学 > 题目详情

已知四棱锥的底面为菱形,且
,的中点.

(Ⅰ)求证:平面
(Ⅱ)求点到面的距离.

(I)证明:连接

为等腰直角三角形
的中点
……………………2分
得出 是等边三角形
由勾股定理得 
(II)

解析试题分析:(I)证明:连接
 

为等腰直角三角形
的中点
……………………2分

是等边三角形
,………………………………4分

,即
……………………6分
(II)设点到面的距离为
  …………8分
,到面的距离

  ………………………………10分

到面的距离为……………………12分
考点:本题主要考查立体几何中的垂直关系,体积及距离的计算。
点评:中档题,立体几何题,是高考必考内容,往往涉及垂直关系、平行关系、角、距离、体积的计算。在计算问题中,有“几何法”和“向量法”。利用几何法,要遵循“一作、二证、三计算”的步骤,利用向量则能简化证明过程。本题计算距离时运用了“等体积法”,简化了解答过程。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在直角梯形ABCD中,,且E、F分别为线段CD、AB上的点,且.将梯形沿EF折起,使得平面平面BCEF,折后BD与平面ADEF所成角正切值为

(Ⅰ)求证:平面BDE
(Ⅱ)求平面BCEF与平面ABD所成二面角(锐角)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
在边长为2的正方体中,EBC的中点,F的中点

(1)求证:CF∥平面
(2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图1,在Rt中,.D、E分别是上的点,且,将沿折起到的位置,使,如图2.

(Ⅰ)求证:平面平面
(Ⅱ)若,求与平面所成角的余弦值;
(Ⅲ)当点在何处时,的长度最小,并求出最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
如图,四边形为矩形,平面上的点,且平面.

(1)求证:
(2)求三棱锥的体积;
(3)设在线段上,且满足,试在线段上确定一点,使得平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

正三棱柱中,E为AC中点

(1)求证: 
(2)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图,棱柱的侧面是菱形,

(1)证明:平面平面
(2)设上的点,且平面,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
在如图所示的四棱锥中,已知 PA⊥平面ABCD
的中点.

(1)求证:MC∥平面PAD
(2)求直线MC与平面PAC所成角的余弦值;
(3)求二面角的平面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图, 是边长为的正方形,平面与平面所成角为.

(Ⅰ)求证:平面
(Ⅱ)求二面角的余弦值;
(Ⅲ)线段上是否存在点,使得平面?若存在,试确定点的位置;若不存在,说明理由。

查看答案和解析>>

同步练习册答案