(本小题满分12分)
在如图所示的四棱锥
中,已知 PA⊥平面ABCD,
,
,
,
为
的中点.![]()
(1)求证:MC∥平面PAD;
(2)求直线MC与平面PAC所成角的余弦值;
(3)求二面角
的平面角的正切值.
(1)根据中位线性质,得到EM//AB,且EM=
AB. 又因为
,且
,所以EM//DC,且EM=DC ∴四边形DCME为平行四边形, 则MC∥DE,
(2)
(3) ![]()
解析试题分析:(1 )如图,取PA的中点E,连接ME,DE,∵M为PB的中点,![]()
∴EM//AB,且EM=
AB. 又∵
,且
,
∴EM//DC,且EM=DC ∴四边形DCME为平行四边形,
则MC∥DE,又
平面PAD,
平面PAD
所以MC∥平面PAD
(2)取PC中点N,则MN∥BC,∵PA⊥平面ABCD,∴PA⊥BC ,
又
,∴BC⊥平面PAC,
则MN⊥平面PAC所以,
为直线MC与平面PAC所成角,![]()
![]()
(3)取AB的中点H,连接CH,则由题意得![]()
又PA⊥平面ABCD,所以
,则
平面PAB.
所以
,过H作
于G,连接CG,则
平面CGH,所以![]()
则
为二面角
的平面角. ![]()
则
,![]()
故二面角
的平面角的正切值为![]()
考点:本试题考查了线面角和二面角的求解运用。
点评:解决该试题的关键是能利用线面角和二面角的定义,准确的表示角,借助于三角形的知识来求解得到,也可以建立空间直角坐标系来运用空间向量法来得到求解,属于中档题。
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
如图,在三棱锥
中,
,
,
,
,
, 点
,
分别在棱
上,且
,![]()
(Ⅰ)求证:
平面PAC
(Ⅱ)当
为
的中点时,求
与平面
所成的角的正弦值;
(Ⅲ)是否存在点
使得二面角
为直二面角?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分)
如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=
PD.![]()
(1)证明:平面PQC⊥平面DCQ;
(2)求二面角Q-BP-C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分13分)
如图1,在等腰梯形
中,
,
,
,
为
上一点,
,且
.将梯形
沿
折成直二面角
,如图2所示.![]()
(Ⅰ)求证:平面
平面
;
(Ⅱ)设点
关于点
的对称点为
,点
在
所在平面内,且直线
与平面
所成的角为
,试求出点
到点
的最短距离.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分14分)
如图,已知平面QBC与直线PA均垂直于
所在平面,且PA=AB=AC.![]()
(Ⅰ)求证:PA∥平面QBC;
(Ⅱ)若
,求二面角Q-PB-A的余弦值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题12分)在直三棱柱(侧棱垂直底面)
中,
,
.![]()
(Ⅰ)若异面直线
与
所成的角为
,求棱柱的高;
(Ⅱ)设
是
的中点,
与平面
所成的角为
,当棱柱的高变化时,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
如图,平面
⊥平面
,
是直角三角形,
,四边形
是直角梯形,其中
,
,
,且
,
是
的中点,
分别是
的中点. ![]()
(Ⅰ)求证:
平面
;
(Ⅱ)求二面角
的正切值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com