精英家教网 > 高中数学 > 题目详情

(本小题满分12分)
如图,平面⊥平面是直角三角形,,四边形是直角梯形,其中,,且的中点,分别是的中点.

(Ⅰ)求证:平面
(Ⅱ)求二面角的正切值.

(Ⅰ)取的中点,证明四边形为平行四边形, ∴,则平面(Ⅱ)2

解析试题分析:(Ⅰ)取的中点,连接,由中点,
中点,∴,
,故四边形为平行四边形,                             ……3分
,则平面.                                         ……4分
(Ⅱ) 连接,则,又,平面⊥平面
⊥面, 故面⊥面,                                   ……6分
,则⊥面,
,连
,故为二面角的平面角,                     ……8分
由于的中点,故===1,
,
的中点,故,又的中点,可知,
从而,又的中点,∴的中点∴==,   ……11分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
在如图所示的四棱锥中,已知 PA⊥平面ABCD
的中点.

(1)求证:MC∥平面PAD
(2)求直线MC与平面PAC所成角的余弦值;
(3)求二面角的平面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图, 是边长为的正方形,平面与平面所成角为.

(Ⅰ)求证:平面
(Ⅱ)求二面角的余弦值;
(Ⅲ)线段上是否存在点,使得平面?若存在,试确定点的位置;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直三棱柱中,分别是棱上的点(点 不同于点),且的中点.

求证:(1)平面平面
(2)直线平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)如图,已知四棱锥P—ABCD中,底面ABCD为菱形,PA平面ABCD,,BC=1,E为CD的中点,PC与平面ABCD成角。

(1)求证:平面EPB平面PBA;(2)求二面角P-BD-A 的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图,四棱锥P--ABCD中,PB底面ABCD.底面ABCD为直角梯形,AD∥BC,AB=AD=PB=3,BC=6.点E在棱PA上,且PE=2EA.

(1)求异面直线PA与CD所成的角;
(2)求证:PC∥平面EBD;
(3)求二面角A—BE--D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图,在□ABCD中,∠DAB=60°,AB=2,AD="4." 将△CBD沿BD折起到△EBD的位置,使平面EBD⊥平面ABD.

(1)求证:AB⊥DE;
(2)求三棱锥E—ABD的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分15分)如图,在四棱锥中,底面是正方形,侧棱底面的中点,作于点

(1)证明:平面.
(2)证明:平面.
(3)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面 ,   ,的中点.
(Ⅰ)证明:
(Ⅱ)证明:平面
(Ⅲ)求二面角的正切值.

查看答案和解析>>

同步练习册答案