(本题满分12分)
如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=
PD.![]()
(1)证明:平面PQC⊥平面DCQ;
(2)求二面角Q-BP-C的余弦值.
(I)建立空间直角坐标系后,计算
证得PQ⊥DQ,PQ⊥DC.PQ⊥平面DCQ.
再据PQ
平面PQC,得到平面PQC⊥平面DCQ. (II)
解析试题分析:如图,以D为坐标原点,线段DA的长为单位长,射线DA为x轴的正半轴建立空间直角坐标系D—xyz.![]()
(I)依题意有Q(1,1,0),C(0,0,1),P(0,2,0).
则![]()
所以![]()
即PQ⊥DQ,PQ⊥DC.
故PQ⊥平面DCQ.
又PQ
平面PQC,所以平面PQC⊥平面DCQ. …………6分
(II)依题意有B(1,0,1),![]()
设
是平面PBC的法向量,则![]()
因此可取![]()
设m是平面PBQ的法向量,则![]()
可取![]()
故二面角Q—BP—C的余弦值为
………………12分
考点:本题主要考查立体几何中的垂直关系,角的计算,空间向量的应用。
点评:典型题,立体几何题,是高考必考内容,往往涉及垂直关系、平行关系、角、距离的计算。在计算问题中,有“几何法”和“向量法”。利用几何法,要遵循“一作、二证、三计算”的步骤,利用向量则能简化证明过程。
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
如图1,在等腰梯形CDEF中,CB、DA是梯形的高,
,
,现将梯形沿CB、DA折起,使
且
,得一简单组合体
如图2示,已知
分别为
的中点.![]()
![]()
图1 图2
(1)求证:
平面
;
(2)求证:![]()
;
(3)当
多长时,平面
与平面
所成的锐二面角为
?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
如图1,在Rt
中,
,
.D、E分别是
上的点,且
,将
沿
折起到
的位置,使
,如图2.![]()
(Ⅰ)求证:平面
平面
;
(Ⅱ)若
,求
与平面
所成角的余弦值;
(Ⅲ)当
点在何处时,
的长度最小,并求出最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(14分)如图,在三棱锥S—ABC中,
是边长为4的正三角形,平面SAC⊥平面ABC,SA =" SC" =
,M、N分别为AB、SB的中点。![]()
⑴ 求证:AC⊥SB;
⑵ 求二面角N—CM—B的正切值;
⑶ 求点B到平面CMN的距离。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
在如图所示的四棱锥
中,已知 PA⊥平面ABCD,
,
,
,
为
的中点.![]()
(1)求证:MC∥平面PAD;
(2)求直线MC与平面PAC所成角的余弦值;
(3)求二面角
的平面角的正切值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
如图,菱形ABCD与矩形BDEF所在平面互相垂直,
.![]()
(1)求证:FC∥平面AED;
(2)若
,当二面角
为直二面角时,求k的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com