精英家教网 > 高中数学 > 题目详情
13.函数f(x)的定义域为D,若对于任意x1,x2∈D,当x1<x2时,都有f(x1)≤f(x2),则称函数f(x)在D上为非减函数.设函数f(x)在[0,1]上为非减函数,且满足以下三个条件:①f(0)=0;②$f(\frac{x}{3})=\frac{1}{2}f(x)$;③f(1-x)=1-f(x).则$f(\frac{1}{3})+f(\frac{1}{8})$=$\frac{3}{4}$.

分析 由已知函数f(x)满足的三个条件求出f(1),f($\frac{1}{2}$),f($\frac{1}{3}$),进而求出f($\frac{1}{9}$),f($\frac{1}{6}$)的函数值,又由函数f(x)为非减函数,求出f($\frac{1}{8}$)的值,即可得到答案.

解答 解:∵f(0)=0,f(1-x)=1-f(x),
令x=1,则f(0)=1-f(1),解得f(1)=1,
令x=$\frac{1}{2}$,则f($\frac{1}{2}$)=1-f($\frac{1}{2}$),解得:f($\frac{1}{2}$)=$\frac{1}{2}$.
又∵$f(\frac{x}{3})=\frac{1}{2}f(x)$,
∴f($\frac{1}{3}$)=$\frac{1}{2}$f(1)=$\frac{1}{2}$,f($\frac{1}{9}$)=$\frac{1}{2}$f($\frac{1}{3}$)=$\frac{1}{4}$,f($\frac{1}{6}$)=$\frac{1}{2}$f($\frac{1}{2}$)=$\frac{1}{4}$,
又由f(x)在[0,1]上为非减函数,
故f($\frac{1}{8}$)=$\frac{1}{4}$,
∴f($\frac{1}{3}$)+f($\frac{1}{8}$)=$\frac{3}{4}$.
故答案为:$\frac{3}{4}$.

点评 本题主要考查了抽象函数及其应用,以及对新定义的理解,同时考查了计算能力和转化的思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.计算:
(1)$\sqrt{{x^2}-6x+9}$-|4-x|(x<3);
(2)log2(47×25)+log26-log23;
(3)${0.0081^{\frac{1}{4}}}+{({4^{-\frac{3}{4}}})^2}+{(\sqrt{8})^{-\frac{4}{3}}}-{16^{-0.75}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知向量$\overrightarrow a$与$\overrightarrow b$的夹角为120°,$|\overrightarrow a|\;=3$,$|\overrightarrow a+\overrightarrow b|\;=\sqrt{13}$,则$|\overrightarrow b|$等于(  )
A.5B.$\sqrt{5}$C.4D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.各项均为正数的递增等比数列{an}满足a1=1,且a2a4,a3a5+18,a4a6成等差数列.
(1)求数列{an}的通项公式:;
(2)若bn=log3an+$\frac{1}{2}$,cn=1$\frac{1}{{b}_{n}{b}_{n+1}{b}_{n+2}}$+(-1)nb${\;}_{n}^{2}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.口袋中有四个小球,其中一个黑球三个白球,从中随机取出两个球,则取到的两个球同色的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.以椭圆$\frac{x^2}{4}+{y^2}$=1的焦点为顶点,长轴顶点为焦点的双曲线的渐近线方程是y=±$\frac{\sqrt{3}}{3}$x,离心率为$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知F1,F2分别是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,点A(1,$\frac{\sqrt{3}}{2}$)在椭圆C上,|AF1|+|AF2|=4,则椭圆C的离心率是(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{5}}{4}$C.$\frac{2}{3}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若y=sin$\frac{2π}{3}$,则y′=(  )
A.-$\frac{\sqrt{3}}{2}$B.0C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在正六边形ABCDEF中,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AF}$=$\overrightarrow{b}$,求$\overrightarrow{AC}$,$\overrightarrow{AD}$,$\overrightarrow{AE}$.

查看答案和解析>>

同步练习册答案