精英家教网 > 高中数学 > 题目详情
10.集合{x|x<-2}用区间表示为(-∞,-2).

分析 集合{x|x<-2}用区间表示为(-∞,-2).

解答 解:集合{x|x<-2}用区间表示为(-∞,-2);
故答案为:(-∞,-2).

点评 本题考查了区间的定义.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.求下列函数的值域:
(1)y=$\frac{{x}^{2}-1}{{x}^{2}+1}$;
(2)y=x-$\sqrt{1-2x}$;
(3)y=$\sqrt{x}$+$\frac{1}{\sqrt{x}-1}$(x>1);
(4)y=$\frac{1}{\sqrt{x-{x}^{2}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知f(x)是定义在R上的偶函数,定义在R上的奇函数g(x)过点(-1,1)且g(x)=f(x-1),则f(0)+f(1)=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设函数f(x)=$\left\{\begin{array}{l}{{2}^{x}+a,(x>2)}\\{x+{a}^{2},(x≤2)}\end{array}\right.$,若存在x1,x2∈R,且x1≠x2,使得f(x1)=f(x2)成立,则实数a的取值范围是(  )
A.(-∞,-2)∪(1,+∞)B.(-∞,-1]∪[2,+∞)C.(-∞,-2]∪[1,+∞)D.(-∞,-1)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.方程x2=1og${\;}_{\frac{1}{2}}$x解的个数是1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若集合S1={(x,y)|lg(1+x2+y2)≤1+lg(x+y)},S2={(x,y)|lg(2+x2+y2)≤2+lg(x+y)},则S2与S1面积之比为(  )
A.99:1B.100:1C.101:1D.102:1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数y=g(x)满足g(x+2)=-g(x),若y=f(x)在(-2,0)∪(0,2)上为偶函数,且其解析式为f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,0<x<2}\\{g(x),-2<x<0}\end{array}\right.$则g(-13)的值为(  )
A.-1B.0C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知tan($\frac{π}{6}$-α)=-2,α∈[$\frac{π}{6}$,$\frac{7π}{6}$],则sin$\frac{α}{2}$cos$\frac{α}{2}$+$\sqrt{3}$cos2$\frac{α}{2}$-$\frac{\sqrt{3}}{2}$=(  )
A.-$\frac{2\sqrt{5}}{5}$B.-$\frac{\sqrt{5}}{5}$C.$\frac{\sqrt{5}}{5}$D.$\frac{2\sqrt{5}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.数列$\frac{3}{2}$,-$\frac{5}{4}$,$\frac{7}{8}$,-$\frac{9}{16}$,…的一个通项公式为(  )
A.an=(-1)n$\frac{{2}^{n}+1}{{2}^{n}}$B.an=(-1)n$\frac{2n+1}{{2}^{n}}$
C.an=(-1)n+1$\frac{{2}^{n}+1}{{2}^{n}}$D.an=(-1)n+1$\frac{2n+1}{{2}^{n}}$

查看答案和解析>>

同步练习册答案