精英家教网 > 高中数学 > 题目详情
1.函数f(x)=ln(x2+2)-ex-1的图象可能是(  )
A.B.C.D.

分析 分析四个图象的不同,从而判断函数的性质,利用排除法求解.

解答 解:当x→+∞时,f(x)→-∞,
故排除D;
易知f(x)在R上连续,故排除B;
且f(0)=ln2-e-1>0,
故排除C,
故选A.

点评 本题考查了函数的性质的判断与数形结合的思想方法应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.如果(1+x)n的展开式中x2的系数等于x的系数的3倍,则n的值为7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知f(x)是R奇函数,对x∈R都有f(x+4)=f(x)+f(2)成立,若f(1)=2,则f(2015)等于-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列函数中,在其定义域上为增函数的是(  )
A.y=x2B.y=e-xC.y=x-sinxD.y=-$\sqrt{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列有关命题的说法正确的是(  )
A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”
B.“x=-1”是“x2-5x-6=0”的必要不充分条件
C.命题“?x∈R使得x2+x+1<0”的否定是:“?x∈R均有x2+x+1<0”
D.已知命题p:?x∈[0,1],a≥ex,命题q:?x∈R,使得x2+4x+a≤0.若命题“p∧q”是假命题,则实数a的取值范围是(-∞,e)∪(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知$\overrightarrow a$=(cosθ,sinθ),$\overrightarrow b$=(-1,$\sqrt{3}$),则|$\overrightarrow a$-$2\overrightarrow b$|的最大值和最小值分别是(  )
A.25,9B.5,3C.16,0D.16,4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\frac{x+a}{{x}^{2}+2x+2}$.
(I)证明:对任意实数a,存在(α,β),α<β,使得函数f(x)在(α,β)上是增函数;
(Ⅱ)若方程f(x)=x-1有三个不同实数根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若f(x)=3x3+2x2+x+4,则f(9)=2362.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,已知四边形ABEF为矩形,四边形ABCD为直角梯形,平面ABEF⊥平面ABCD,∠BAD=90°,AB∥CD,AF=BC=2,CD=3,AB=4.
(1)求证:AC⊥平面BCE;
(2)求三棱锥E-BCF的体积.

查看答案和解析>>

同步练习册答案